g
&
=
B

LOGIC PROGRARNNING AND KNOWLEDGE MAINTENANCECU) SYRACUSE =~ 1/2
UNIY NY SCHOOL OF COMPUTER_AND_INFORMATION NCE

K A BOWEN 13 AUG 87 AFOSR-TR-87-1304 $AFOSR- 92-0292

L

izl

N e

. o M

NN .

-

R TIR TR
—___-—I—O— i) 2l
= u " = ,{
[. b
m T =N
= flis !
L25 Jlis e

”»

MICROCOPY RESOLUTION TEST CHART '
. NALIONAL BUREAU Of STANDARDS 1963-4

- .
D" L . L ® L o o ® ® ° o ® ® ® o ®
- ST rl***vtr-v* ot 3 W
ey C R S A, N A N N NN NI ENTN O SIRTAP AN A
. v N n, ',-* J"J‘J'If'd"d‘"l\' v Y n e e SN S W e Ty (VAN W N
*' ‘ ‘e . ',“/(f/"f 1 - \\%'.- ~’ ’V.‘.a.f . ff’-f'f‘f LA PCae 2 (
-.\---. ot N-- 'ﬁ,h o > Neld e T A AR A O e e
» : ot - 4-.’ ro RO A T S A AT A A A A A A NN NN,
.‘\ Y, 4"!'-(\1' v J' P ¥ N A rle “.‘. T NS A I....

n\“-‘

.--‘. e s 1, Ao

s Lot
§

TANR W WO WL o~ = o

-, ey - W L

UNLCLASSIFIED

REPORT DOCUMENTATION PAGE .

AD_A 1 85 57 1 m To RESTRICTIVE MARKINGS

\
N
5
\
. . <o 3 JSTRIBUTION / AVAILABILITY OF REPORT
W SECURTY CASSHCA « W au .
' f;-:’roved Por aublge release;
- - Fiotp b
» 70 KOASSFCA OR - ~WCAAD £ tr.tutign unlimiteg,
N 7 RGANIZATION REPORT NUMBER(S)
* & N SOMANG SAGANIA On Pt RO 3 MOMTORING O
: s AFOSR-TR. 87-] 30 4
- : ONITORING ORGANIZATION
- — T iy o0 D65CE S MBOL a4 NAME OF M
' @ SAMN 4 M DSCRASG JACARIA ¥ oo ste) AFOSR/NM
7. STYRACTSE INIVERSITY
” o ADORESS (Ciry, State, and 2IP Code)
z & ADOWSS KONy Mse end ¥ Code) - CCIENCES DB:DG “‘0"’
- SCHOOL 1P COMPUTER AND INFORMATION SCIENCE ot B bC 20332-6448
N 31) LINK HALL, SYRACLUSE UNIVERSITY ¢ 4
22 SYRACL S
. e Nas ;:: ::..éj;loe.somm 80 JFEICE STMBOL |9 PROCLREMENT INSTRUMENT IDENTIFICATION NUMBER
v tée) 2-0292
= OAGAMZA™ION \pocR (f\- Hmvu AFOSR 8
.;-:I & ADORESS (CIYy. State, ond 2% Code) 10_SOURCE OF FUNDING NUMBERS
' PROGRAM PROJECT TASK WORK UNIT
"t BLDG 410 ELEMENT NO | NO NO ACCESSION NO
r\; BOLLING AFB, DC 203326448 61103F 2304 A2
o 11U TITUE (ichucte Secorty Clams hearon)
) LOGIC PROCRAMMING AND KNOWLEDGE MAINTENANCE
12 PERSONAL AUTHOR(S)
w0 PROFESSOR KENNETH A BOWEN
138 TYPE OF REPORT 136 TIME COVERED Y4 SATE OF REPC -~ (Year, Month, Day) Fs PAGE COUNT
FINAL FROM 30 105€// 1987 Aug 13 151
16. SUPPLEMENTARY NOTATION
17 COSATI CODES 18 SUBJECT TERMS (Continye on reverse f necessary and identify by block aumber)
FIELD GROUP SUB-GROUP
19. ABSTRACT (Continue on reverse if necessary and identty by biock number)

o logic pProgramming systems in
the form of a metalanguage, by studying to what extent framessyand

?em'antic nets could be esr\;?loyed. The management of consistency and
lntegrety under change using a maetalanguage was analyzed. This research

caPra e ed deductive Programming lanaguage, called
MmetaProglog, ich enhances prol 's ability to i taba
themselves “ang to reason aboyt thogm. L : o ishey e da .
databases (or theories) as first-class objects capal i

: pable of being passed

as arguments. Four Papers were publisheq under this Jrant, including

: “"Meta-kavek pProgramming and knowledge representation” -and’"
t .
metalevel extension to Prologn ¢ g Presentation” ‘and metaProlog: A

o, wnm.’u-m:nvmumur T Ur anyirag e musiiac
Duncussmsommwneo O saMme as gey CIo-¢ users T
) 222 NAME QF RESPONSIRLE
..’4 3“ R ErowieEyNg:ﬁDUAL 22b 7rs&L7ef_38r\2455(mc/uce Area Code) | 22¢ oFrm:E SYMBOL
00 forMm 1473, sa man

83 APR edition Tay ce used urtd exhausted
Al other eg tars are opsolete

g . R “ & LR .,
s Coe e e - AR T e T e e T e
.

Pl
9 .n' R)

Wy

—— JECURITY CLASSIFICATION OF THI§ PAGE

-~ . . - -.'-.“p-'- . DA S ,»."-"- '1.'-
e e e e Lt L Lt I et AR -'_‘ PRSI A N R Ry Uy Py U dadh
AL L NN D Pt YO A

AFOSR-TR- 87-1304

LOGIC PROGRAMMING
: AND
§ KNOWLEDGE BASE
MAINTENANCE

rl

-

LN :

Final Report
N to the
N Air Force Office of Scientific Research
Grant AFOSR-82-0292

- - - - -
e (St)

Principal Investigator: ' a0
ooryY

’ WOPECTED
4 Professor Kenneth A. Bowen |
Y School of Computer and Information Science

w 313 Link Hall, Syracuse University, | Accesion Tor
Syracuse, NY 13210 }7.{%,5 .
(315)423-3564 Leie Tas

by ced

& £ L A

o e
]
|
!
i

%
D)
\

- e . S U PR
& A SO LR ERCURTAN \"L_",\":-."."‘.’\'-."-.':-.' LGRS -." S O S A TN GO LN (N COR NG (A
o A - a' N | N h, . . N A - - L »

- 1 R VLRI IR Tl T AR Vol et ol Tt
K 3.\. .), S S " .f,.} AN,

Contents

A. Introductory Material and Achievements

Abstract and Summary

1.

2.
3.
4.

Logic Programming

Logic and Knowledge Bases
Project Plan & Achievements
Students & Publications

B. metaProlog: Design & Application

1. Introduction
2. Meta-level Programming and metaProlog

/- 3. The metaProlog System
o 4. Quantification and Naming: Language Foundations
7 5. Programming Examples: Poirot
= 6. Programming Examples: Bottom-Up Parsing
: 7. Co-routining and Parallelism
N 8. Programming Examples: Inlaud Spills
,) 9. Programming Examples: Circuit Diagnosis
! 10. Frames and Arrays

-’ 11. Programming Examples: Truth Maintenance
12. AmetaProlog Simulator

s 13. Semantic Foundations

. 14. Implementation Considerations

References

’ (Parts 1-7 of Part B written with Tobias Weinberg
J

"
r{

e

o

W

SNSRI NN T - e

o N A Y N A TR S

[

AAREHEUBE B BIFBaw

117

146
150

T

1 At st Al ‘ag af.val, %al. sl *, . TS AR) TR K faf il Sal TaR ®il ap gy ¢ DU L TR A TR a) VB 3 DD . +

\ Introductory Material & Achievements 2

Part A. Introductory Material and Achievements

Original Abstract

"The maintenance of large volatile knowledge bases is the focus of this

) project. The viewpoint from which the study is being conducted is that of
” certain extensions of current logic programming systems, primarily the
b so-called "metalanguage” systems in which a logic programming

language is amalgamated with a portion of its metalanguage. Major
; thrusts of the work include (1) study of the extent to which such
representation mechanisms as frames and semantic nets can be logically
treated (thus yielding a measure of independence of representation for the
rest of the work), and (2) the use of the "metalanguage” facilities for the
maintenance of consistency and integrity under change and other
questions of analysis of the knowledge base.”

« & &8 LR

Extended Summary

O

Computer-based systems to aid human intelligence analysts are
instances of a generic class of systems known as tracking systems. Such
systems minimally consist of a knowledge base in which records
representing the analyst's concerns are stored. A useful organization of
such knowledge bases distinguishes between events and event-lines.
Events are relatively discrete in time, such as signal reports or activity
J reports, while event-lines are extended, continuous sequences of events.

Events may be thought of as discrete points, "plotted” on some event-line.
- One may also impose a hierarchical structure among event-lines with
individual event-lines constituting components of some "higher-level”
event-line. For example, a group of event-lines representing individual
aircraft flight tracks might constitute a sortie event-line. Note that some
individual events, e.g., a particular signal report, may be plotted against
the higher-level sortie-line, rather than against any particular aircraft
event-line. The first problem to be noted is that of designing appropriate
data structures to represent events, event-lines and their relationship in the
! knowledge base.

IS .
Fata'n a2l

L SR L WL L W AN

The second problem arises from the dynamic character of the
knowledge base. New entries (or deletions of existing entries) are steadily
made, both by the human analyst and possibly by other computer
programs. The problem is to avoid degrading the knowledge represented in

e ta L S IR
MACAEIABLL SR

~
\
o

O e AT AN TN OO o O b ot "

.....

- - . . o
-' ’t. -{u.“h- .

A Y L S T) v Ky NI
U’ W Sy
Y,

\ v

gt gt (RIS VAL AL L AU “4? bo‘al ‘a8 AT LA AT UL (LU AU . at U U UL . LY g aba gt UR\V VUTY » D Lo g% §V Vooar

o Introductory Material & Achievements 3

Y
:':: the database via mistaken or inconsistent entries, and to flag "disturbing”
or "non-nominal” entries. This is the mainenance problem. In systems of
‘ more than trivial scope, this will require a maintenance subsystem
:' capable of examining and manipulating the knowledge base.
"
¥
" The third problem is that of assisting the analyst in generating
’ hypotheses and scenarios, and using these to reach conclusions concerning
‘ﬁ events and event-lines in the knowledge base. These include such problems
"' as whether a given event should be plotted against a particular event-line,
or projecting likely extensions of an event-line (i.e., projecting likely events
\ to occur on a given event-line),
This project dealt with basic research directed towards providing a
,'}'_ programming system containing powerful tools adequate for the solution of
S these problems. The project also set out to test these tools in the
~ preliminary exploration of methods of solution for the last problem. The
o focus of the work was a system called metaProlog which belongs to the
.‘3 Fifth Generation family of programming languages. metaProlog is a direct
P extension of Prolog designed to remedy some of the latters fundamental
-~ inadequacies. Prolog's attractiveness for the management of complex
oY knowledge bases lies in its rule-based deductive character. However,
: ordinary Prolog's facilities for manipulating the databases themselves and
’ for reasoning about them are quite poor and of a non-logical character.
& The major step on the way from Prolog to metaProlog lies in regarding
o databases, or theories as they are called, as first-class objects, capable of
-:: being passed as arguments to procedures and returned as values of
:: variables. This extension provides a very powerful programming tool,
\': useful in constructing data structures for representing events and event-
_ lines in a more flexible manner similar to a generalized notion of frame,
' while at the same time providing a logically sound method of manipulating
q‘ multiple database and contexts.
o
>

Logic Programming

}
L}

\ ot

P ol s

.
RN

1.0 LOGIC PROGRAMMING

Logic programming utilizes formalized mathematical logic as the
basis of programming languages for controlling computers. Its principal
practical realizations are the Prolog systems invented by Colmerauer and
Kowalski.

1.1 Proofs And Programs

Formal logics, which constitute the basis of logic programming, are
concerned with the construction of proofs for assertions.

The overall structure of logic as a computational formalism can be
described as follows. A program is produced by constructing a theory T
together with a distinguised formula A. The theory T constitutes a logical
description of the domain in which the computations are to take place (e.g.,
blood diseases and therapeutic antibiotics, econometric equations for
forecasting, messages in an intelligence assistance system). The formula A
is an activation method for the program; input and output is accomplished
by means of the free variables in A. Suppose that A(X,Y) has the free
variables X and Y, where X is intended to be used for input and Y for
output. Then given any term s describing an input, a logical computation
amounts to a search for a term t together with a proof P of the assertion
A(s,t). The proof P is based on the theory T. If such a term t and proof P
can be found, the computation is said to succeed and the term t is its
output. If no such pair can be found, the computaion is said to fail.

1.2 Procedural Interpretation

The key to the power of logic in programming lies in the existence of
two interpretations for formulas A belonging to a theory T. The first, the
declarative interpretation, views A as describing some property of the
entities under consideration. This is the traditional view of logical
formulas, and is the interpretation intended when A is used as part of a
program specification. The second, the procedural interpretation, views A
as giving directions for the solution of some problem. This procedural
interpretation, devised by Kowalski and Colmerauer, is especially

perspicacious for the Horn clause logic systems which include the Prolog
systems.

- P I (LI I O T Sy S A AR Rt L T T Rt T S M A T T T
N e e e e T T

Lo JP 0 i

) NN

»
PRI R M

\‘\‘ Pt I A

“watat)

O}

L LA 'S

S

Logic Programming 5

1.3 Representability

The desired amalgamation of object language and metalanguage uses
a construction which is a special case of the representation of an intuitive
or model-theoretic relation R by a predicate symbol P in the context of a set
of sentences (i.e. , a theory).

In general:

A predicate symbol P represents a relation R in the
context of a set of sentences T if and only if :

There is a naming relation which pairs individuals i1
from the domain of R with terms i' of the language of T in
such a way that the following holds:

for all i1, i9, ... i in the domain of R,
(i1,1i9, ...,in) e R ifand only if T [- P@y’, 19, ..., in").

The symbol |- indicates the provability relation. That is, if A is a formula
and T is a theory, then

TI-A
means that:
There exists a proof of A based on the axioms of T.

Now suppose that R is the provability relation |-1, of a language L. (In
our intended applications L is the full standard form of logic or some subset
such as Horn clause logic.) To represent |-], in another language M
(possibly identical to L) it is necessary to name sentences, sets of sentences
and other linguistic expressions of L by means of terms of M. In general, if
A is a linguistic expression or a finite set of expressions of L we will write
either "A" or simply A' to stand for a term of M which names A.

S L A N e s s S A A Y
¥ s’ ' - » - R o - & - - [) R o " " L3 Por {)

Logic Programming

1.4 The Representation Of Provability

Let demo be a binary predicate symbol of M, where M functions as a
metalanguage for T. If PR is a set of sentences of M, we say that

demo represents |-1, relative to Pr if and only if

for all finite sets of sentences T of L and all single
sentences B of L,

TI-1, B ifand onlyif Pr |-pfdemo(T, B).

Recall that T' is the name of T in language M. Note that this notion of
representability does NOT require that the negation of demo,(if it
expressible in M) represent unprovability in L relative to Pr. Indeed the
undecidability of first-order logic entails that for no representation of
provability in L (in a finitary system) does the negation of that
representation in turn represent unprovability in L

It is essential to note that nothing in the foregoing definitions forces
the languages LL and M to be distinct. While our intution is to read these
definitions with the assumption that L. and M are distinct languages,
careful examination shows that the definitions containing nothing
requiring L and M to be distinct. Thus it is conceivable that L be identical
to M. In this special case, the definition of representability would read as
follows:

demo represents |-1, in L relative to Pr if and only if:
for all sets T of sentences of . and all single sentences B,
T |-, B ifand onlyif Pr I-1, demo(T", B').

We can carry this even further. Since the quantifier "for all sets T"
ranges over all sets of sentences of L, and since Pr is one of the sets of
sentences of L, we would obtain the following consequence for any language
L and theory Pr satisfying the foregoing defintion:

For all single sentences B of L,

Pr |-, B ifandonlyif Pr |-}, demo(Pr', B").

RO

(Rt

Cof oy

s

Logic Programming

The existence of such languages is demonstrated by Goédel's famous
construction showing the Incompleteness of Arithmetic, as we will discuss
in more detail later. It turns out that in general, beginning with any
reasonable first-order language L, one can extend L to a language L
which contains a theory Pr satisfying this definition. In particular, this is
true for the languages use for Horn-clause logic, the basis of Prolog. In
fact, the basic expressiveness of Prolog-type languages is sufficient to
directly construct their own proof predicates, as shown in the following.

The following two clauses D1-2 constitute the top-level of a Horn clause
representation of Horn clause provability. (Both the object language L and
the metalanguage M are Horn clause logic.) By virtue of the procedural
interpretation of Horn clauses, D1-2 can also be regarded as the top level of
an interpreter for Horn clause programs.

D1) demo(PROG,GOALS) <— empty(GOALS).

D2) demo(PROG,GOALS) <—
select(GOALS, GOAL, REST),
member(PROC, PROG),
rename(PROC, GOALS, VARIANT-PROC),
parts(VARIANT-PROC, CONCL, CONDS),
match(CONCL, GOAL, SUB),
apply(CONDS & REST, SUB, NEWGOALS),
demo(PROG, NEWGOALS)

1.5 ADatabase Management Example

Database management requires a combination of object language and
metalanguage. The object language is used to pose ground (yes/no) queries
against the database. The metalanguage is needed to specify the database,
to update and maintain the database as it changes in time and to pose
queries which extract useful information from the database. The following
top level of a simplified database management system (DBMS) illustrates
how the demo predicate can be used to interface the object language and
metalanguage.

In this description of a DBMS, the predicate

assimilate(CURR_DB, INPUT, NEW_DB)

v

PPl _l._“. !

;.'IJ.

L J

\

Logle Programming

describes the relationship which holds when the assimilation of an input
sentence into a current database results in a new database (possibly

identical to the current one). The terms x & y and x-y name the sets xu{y)
and x-{y} respectively.

Al) assimilate(CURR__DB, INPUT, CURR__DB) <«—
demo(CURR__DB, input).

A2) assimilate(CURR_ DB, INPUT, NEW_ DB) <—
belongs_to(INFO, CURR__DB),
INTER__ DB = (CURR__DB - INFO),
demo(INTER__DB & INPUT, INFO),
assimilate (INTER__DB, INPUT, NEW__DB).

A3) assimilate(CURR__DB, INPUT, CURR__DB) <—
demo(CURR__DB & INPUT, false).

A4) assimilate(CURR__DB, INPUT, CURR__DB & INPUT) <—
independent(CURR__DB, INPUT).

The clauses Al-4 respectively deal with the folowing cases:

* Al: The new information is already implied by the database;

e A2: The new information implies information in the database;
* A3: The new information is inconsistent with the database;

* A4: The new information is independent from the database.

Clause A2, in particular, selects one item of information in the current
database, removes the item if it is implied by the rest of the database
together with the INPUT, and recursively assimilates the INPUT into the
smaller database. The constant symbol false names the empty clause,
which denotes contradiction. Therefore

demo(T", false)

expresses that T is inconsistent.

The predicate

NPR LT 0 0 T A A 4.'~'...:-'..'-_.‘-,\-,,.'-.\-.‘-_. '''''''

A

-I'-I' s

B A AT Coe _'-’.'-’.:f ".‘-",- ..."--"'-"‘ -'"-_'-"'\"-."-_'.s.ft.".\'-\':-"':.'

N Ay

v 2w

YN

N

) A

i S OF oF W g 4

a b &
Ll)

}l-

A s«ﬁ\\f

Tt v

R N R AN L O AN I N IO TN N I A R AT IO OO) N up Wal BB Uof S 0 ab R 8.8 E 8 5.0 3.8 84

Logic Programming

independent(CURR_DB, INPUT)
can be represented in a variety of ways. The clause

A5) independent(CURR__DB, INPUT) <—
- demo(A1-3, "assimilate(CURR__DB, INPUT, NEW__DB)").

in particular, uses negation by failure to state that the input is independent
from the current database if it cannot be assimilated by any of the preceding
procedures Al-3.

The clauses Al-5 can be imbedded in a program which processes input
streams against the current database. The predicate

process(CURR_DB, INPUT_STREAM, NEW_DB)

describes the relationship which holds when assimilating a stream of
inputs into a current database results in a final new database:

P1) process(CURR_DB, nil, FINAL_DB) <— FINAL_DB = CURR_DB.

P2) process(CURR_DB, INPUT.RESTIN, FINAL_DB) <—
assimilate(CURR_DB, INPUT, INTER_DB),
process(INTER_DB, RESTIN, FINAL_DB).

The clauses P1-2 and Al-5, together with the appropriate lower level
clauses and the representation Pr of provability, constitute a complete, if
somewhat simple-minded, database management system.

1.6 The Amalgamation

We have already noted that object language problems of the form

"Find a proof of B from T in L"

(which we will briefly write as T ?1-1, B) can be replaced by metalanguage
problems

Pr ?1-p demo(A', BY).

Consequently, the metalanguage can replace the object language
altogether. That is, we could dispense with the object language as an

IR I AR SN a:'::‘f;‘.-::.«-"#:;-r"r".r".1-J-"a-:‘.r?.':c;'f:’-'

nnnnn

> &

Logic Programming 10

¢ independent entity, and work in the metalanguage with the names of object
language formulas by using demo. On the other hand, many object
language problems can be solved more naturally and more efficiently in the
\ object language than in the metalanguage. That is, the proof search
meachanism in the object language solves the problems more efficiently
than the search for proofs of "demo(...,...)" in the metalanguage. This is
- because "demo” is a kind of interpreter, while the object language "directly
executes" the problems (at least from the relative point of view of comparing
o the object language and metalanguage proof search mechanisms.) Thus it
. is desirable to combine the directness of the object language with the power
. of the metalanguage in an amalgamation which facilitates the
. communication of problems and their solution between them. Such
. communication is accomplished by means of the following linking rules:

1) Pr |-\ demo(A', B)

2) Al-,B

Pr |-p demo(A', B)

These rules simply restate the two parts of the definition of
representability. The first rule allows the metalanguage to communicate
metalanguage solutions of object language problems to the object language.
v The second rule allows the object language to communicate the solutions of
\ its problems to the metalanguage. (These linking rules are what
y Weyhrauch[1980] calls reflection principles. The use of EVAL in LISP is
also similar to the use of these rules.)

To summarize thus far, M functions as a proper metalanguage for L
if the following hold:

a) There is a naming relation which associates with every linguistic
expression of L at least one variable-free term of M. (A single expression of
L might have several associated names in M. But every variable free term
in M is associated with at most one expression of L.)

&
)
R
Ca
o
\i

b There is a set Pr of sentences of M (involving the symbol 'demo’) which

DI ACIICI N i I N A e 0y LI N R RPN TS et LT St ™ L O T B T LS
e . -.',-\.""»"\' O {\-." "\ \ . WY ‘. \'\'r\ WY S S N S R L N e i-.f-.. N A A A AR R LN
'Y 13 » o A 8 B 'y s 5 I . e 5 S

L& g

» Logic Programming 11
¥
i v
e is a representation of |-, by means of a predicate symbol 'demo’ such that
the linking rules (1) and (2) hold. |
<
4 L]
\j The only restriction on the languages L amd M imposed by this
o
3'_: definition is that the metalanguage M be adequate for the representation
= of the provability relation of L. Horn clause logic is more than adequate
~ to function as a metalanguage for itself. Notice, moreover, that the
= amalgamation allows the case L=M, where the two languages are
J identical. This case is of special importance, as it allows the formulation
ol both of sentences which mix object language and metalanguage, and of
self-referential sentences.
]
N
~
x
%)
.;:.
7
v
Cd
i:,
-
‘o
v

l".‘
PO B G N

[0

)
L)
e a

e
L e 3

) Logic & Knowledge Bases 12
e
d
’ 2.0 LOGIC AND KNOWLEDGE BASES
N
o 2.1 Logical View Of Knowledge Bases
:
B The traditional logical views of databases views a database model-
3 theoretically as a particular model M of a certain set D of first-order
'_-" formulas. The logic programming view sees a database proof-theoretically
) as a theory T whose axioms include D (cf. Nicolas and Gallaire [1978]). In
i the model-theoretic view, answering a query amounts to truth-functionally
- evaluating the query over the model M. From the proof-theoretic point of
N view, answering a query amounts to attempting to prove the query in the
:: theory T. This proof-theoretic view seems to solve the traditional problems
;‘ of null values and incomplete information (cf. Reiter[1981]). For the
i management of change in volatile complex knowledge bases, the proof-
s theor~ti~ roint of view appears to provide tools to intelligently manage the
: complexity engendered by complex queries and updates. This is because
. proofs provide explicit connections between elements of the database,
‘ whereas truth-functional evaluation provides no such connections.
s 2.2 Correctness Of Knowledge Bases
3¢
-

In one way or another, every knowledge base (KB) models some aspect
of the "real” world. The correctness of the fit between the knowledge base
L and the world must be maintained in the face of change in the world (which
' must be matched by changes in the KB). The minimal constraint to be met
is that after each change, the KB remain self-consistent. But this alone is
insufficient to maintain correctness, since many changes would leave the
KB self-consistent, but no longer correctly representing the intended portion
of the real world. Additional constraints, among them the usual sorts of

)
el

b integrity constraints, are needed to control the change. (It is important to
b! note that integrity is a meta-level concept relative to the object language.
' Integrity constraints are properties which are predicated of object language
- formulas or theories, and as such are metalevel character.) However,
bt consistency remains the key issue, since the additional constraints are
N used simply by requiring that the changed KB remain consistent with
P respect to these constraints. This is part of the problem of truth

matntenance.

RN M M g

Logic & Knowledge Bases

2.3 Thruth Maintenance

The core practical problem of truth maintenance is one of efficiency: if
a proposed update or new fact contradicts the present knowledge base, this
must be discovered in reasonable time. (Of course, deciding what to do
about it -- ignore the update or revise the knowledge base -- must also be
accomplished efficiently.)

The fundamental aspect of this project's approach to efficient truth
maintenance is the utilization of the theory machinery of the metaProlog
system to record computed proofs and justifications, maintain
sophisticated proof-theoretic information about the knowledge base, and
express "control” information about how to go about verifying consistency
in particular settings. For example, let the knowledge base T be regarded

as the union of (in general, non-disjont) consistent theories Tg =Ty U Tg.
Suppose A is a formula such that T U {A) is inconsistent. By the classical
Joint Consistency Theorem (cf. Shoenfield [1967]), there must be a formula
B of the common language of T1 and Tg u {A} such that Ty proves not(B)
and Tg u {A} proves B. That is, we have:

T1l--B and T2I-B.

If Ty and T9 are suitably chosen so that the common language is
exceedingly small, the possible forms for B are severely constrained. In the
optimal case, B must be a variant of A. But then the search for
inconsistency can be restricted from all of Tg to a search for a proof of
not(B) from Ty .

Note that since theories are now regarded as "first-class objects", they
themselves can enter into relations in a database. Thus the information
necessary for maintenance of the pairs (T{ ,Tg) for a primary knowledge
base can be represented in rule form in a (secondary) knowledge base.

2.3.1 Deriving Expectations -

The 'theory mechanism’ of metaProlog can be used to formulate and
maintain "expectations” reyarding the knowledge base. These include both
static expectations of the sort typified by integrity constraints (e.g., for a
particular data relation r(X,Y", the entered values for Y must be integers in
the range 50 to 300), and dJdynamic expectations regarding patterns of

‘-!\-,\1 N

)

e 4'e Bia) RN A S AN 16 ‘g o a* s A RS a8 VXU VOVLS WO WY "0\l A St Sad Gl 64 0 LA LR L' NS 00 a'h a'h o'l a¥h gAd gVR o8f |

' Loglc & Knowledge Bases 14

) change. For example, if over a given period of time, updates for r(x,Y) have
‘ all caused the values of Y to be monotonically increasing in time, the
system should "expect” that future updates of r(x,Y) will furthur increase
the values of Y. Such dynamic expectations can either be derived by the
system or can be included as iron-clad constraints in the basic integrity
machinery expressing the "fit" between the knowledge base and the world it
models.

AL

When a proposed update contradicts a basic integrity constraint or a
- derived constraint, the system must react, either questioning the quality of
the data involved in the proposed update, or revising the knowledge base to
accomdate the update. The basic constraints can have logic procedures
attached to them for specification of such reactions. The derived
. constraints can have their "proofs” attached to them to guide the reaction
process.

The project explored "what can be said" about the knowledge base
. using the facilities of metaProlog. The sorts of "things to say" may include
more sophisticated static integrity constraints than can normally be
expressed, as well as dynamic constraints. To cater to the expression of
dynamic constraints, the knowledge base will almost certainly incorporate
temporal references, either through "time-stamping”, as suggested by
Kowalski{1981], or using of a "validity interval” which is attached to each
assertion and which can contain variables at either end of the interval.
Beyond the rather elementary dynamic constraint suggested above, the
project explored the expression of sophisticated descriptions of expectations
for the knowledge base. These can include alternative outcomes depending
on events in the world being modelled. A particularly interesting use of
< such alternatives would be in the construction of alternative schenarios in
! intelligence knowledge bases, such as those monitoring space missle
launches,

P EES TS ¥ ¢

2.3.2 Knowledge Base Analyst -

In addition to formulating specific (static or dynamic) constraints, the
facilities of the metalanguage can be used to formulate knowledge base
analysis rules. For example:

A B b=

a

Logic & Knowledge Bases 15

If a relation has been updated in such a way that all its
arguments save one are fixed, and the values of this last
argument are increasing numbers, and if the period over
which such updates have persisted is at least N time periods,
then it is reasonable to expect these increases to continue.

Using this point of view, rule-based "knowledge base analyst” expert
systems can be constructed. Such expert systems would be expected to
contain "universal” rules applicable to most knowledge bases as well as
domain specific rules conditioned by the domain of the particular
knowledge base being controlled.

2.3.3 Logic And Knowledge Representation -

The theoretical portions of the project attempted to remain
independent of particular knowledge representation choices. Several
routes to this end suggested themselves. The first is to regard the
machinery of elementary frames and semantic nets as "implementation
overlays” on a basically proof-theoretic relational scheme, treating them as
sophisticated indexing schemes or storage grouping schemes. The widely
used inheritance relations between frames, such as "is-a" or "a-kind-of",
appear to be logically treatable by use of the "semantic net as indexing
scheme" coupled with the expressive capabilities of the metalanguage.
Roughly, if p and q are frames, and if "p is-a qQ" holds, then:

(1) Logically, the pair (p,q) is a tuple in the is-a relation, but the
implementation of "is-a" may be network rather than relational "behind the

scene”; and

(2) Logically, p inherits properties from q via the metalanguage rule:

PR 16 Iy b |

(V F, g)[prop-oflF, q) & name-oflg, F(p)') & is-a(p,q) (R)
— demo(T,g)]

Here "prop-ofiF, q)" means that F is a property holding of instances of the
generic frame q, "name-of(g, 'A")" means that g is a (metalanguage) name
of the formula A, and demo(T, 'A’) means that A is provable in the theory
T. From a logical point of view, deduction is necessary to use (R) to
conclude that F(p) holds. However, the network implementation of is-a
extends to a network implementation of (R) to allow the conclusion F(p) to be
obtained by fast pointer following.

PN s

Y LS

)

s edd

L-.‘)

« & x

No T e

.‘f{ff}

e T
(870,970,

Logic & Knowledge Bases

2.3.4 Virtues Of The Logical Approach -

This logical approach to truth maintenance has several fundamental
virtues:

1. The expressiveness of the extended metalanguage appears to allow the

complete expression of the necessary constraints on a volatile knowledge
base;

2. If the logic system is used not only as a constraint language, but also
as the programming language for knowledge base implementation [as well
as query language], proving the correctness of a knowledge base
implementation becomes a feasable possibility because the gap between
constraint and implementation expression is so narrow;

.~.r S :.r;.r R SN N

"‘-
\'-r.r.f__.-wf.---..n,f\._‘f(_

-t -
""\.'.‘\"‘ \ "\ .

16

o~ -_ LR

.'-I‘lilthl a ot Mot ey (ot Bon gs8 Qav 8a% Uat $av a2 Rt Jint Al ok WUNUERARNKAR) " "4t 4%

N
¥ Project Plan & Achlevements 17
b
¢
s
'y
" 3.0 Project Plan and Achievements
-

" 1e original project set out to explore these and related theoretical
) ideas, to attempt to build a prototype extended metalanguage/knowledge
' . base maintenance system, and to exercise it with one or more non-trivial
& knowledge bases.
Eal
- Project Staff and Contributors
S The following persons were employed as graduate assistants at
Yy various times during the project: Hamid Bacha, Aida Batarekh, and
ﬁ: Tobias Weinberg. Mr. Weinberg was also employed as a research associate
'.' during the second year of the project. He made very substantial

contributions to the work.

.
The following persons, while not directly employed on the AFOSR
'_ grant, have made substantial contributions to metaProlog and its
v applications. Some have been graduate students at Syracuse University
o who, while supported from other sources, worked on aspects of the project,
~ or are colleagues from other institutions who have contributed by their
)¢

valuable discussions with us: Kevin Buettner, Ilyas Cicekli, Keith
% Hughes, Robert Kowalski, Robert Moore, Hidey Nakashima, Andy Turk,
‘ Maarten van Emden, and Christopher White.

o
Original Schedule

Period 1: Theoretical work, including elaborating and working out the
. approaches listed above; detailed examination of some existing systems;

experiments with an existing experimental metalanguage interpreter;
o preliminary design work on prototype metalanguage system
" implementation.
:j:'
Period 2: Continued theorctical work; preliminary design of expert
X knowledge base analyst; cxtensions of metalanguage system design to
:'. support results of theoretical work; construction of prototype extended
- metalanguage system.
v.
.’l
-,
’l
*I -----------------------------

...............

.................

Plan & Achlevements

Project

Period 3: Experiments with expert knowledge base analysts; refinements of
design for knowledge base analysts and construction of full prototype
analyst; experimental operation of knowledge base maintenance/analysis
system using one or more non-trivial knowledge bases.

Summary Of The Work

We extensively, but not exhaustively, surveyed much of the literature,
and became convinced that many of the advantages of frames and semantic
nets can be captured in logic programming systems by a combination of
new storage organizations and relatively minor modifications of the
interpreters. In the case of frames, this was fairly well worked out, and one
version was originally partially installed in the experimental
metalanaguage interpreter coded in DEC-10 Prolog. The technique which
_ was used in this first approach was to organize the storage for the clauses
. concerned with frames according to the terms to which the predicates
apply, rather than according to the predicate being applied, as is the
standard technique. This allows the predicates applying to a given term
(say their first argument) to be stored together, rather like a generalized
record structure. Some of these predicates can be IS-A or A-KIND-OF
predicates whose second arguement is another frame. The modifications to
the interpreter allow it to take advantage of inheritance along these
hierarchies without distorting the logic on the surface of the program. The
use of this technique -- grouping information according to the term to
which it applies -- is being utilised in a similar way to capture the
applications of semantic nets. This approach works quite well and is
> perfectly logical for static frames. It also allows updates for non-static
frames by use of assert and retract, since the frame is represented in the
database. For determinate programs, this has a logical basis. However, if
a program must backtrack over an update to the frame, ordinary
implementations of Prolog backtracking cannot resent the frame. Proper
behavior under backtracking can be regained by extending the
implementation to support a "backtrackable assert and retract.” However,
the simplicity of this implementation loses the logical semantics.

"{c We developed a second approach to the implementation of frames

based on the use of Prolog's structured terms. These terms are quite like
F o labelled records in conventional programming languages, and are quite
appropriate for the representation of frames. Again, this approach works
very well for static frames, and requires no change to the basic Prolog
implementation. However, to cater to dynamic, updatable frames, a form of

-

A

AT AT AT AT T . I IS S T S A R Gy \-.._- -
\" !’Ed\’:\i&’i\i’. PGPS i'i:‘.-:v",-

Cele el

e e T

S a%a'ata ba’ ate @a* it 0y 28’ b’ by 4’ dhe® abe VA gt 8aaiat it hat A bat bao v D4t Mat g 0a% 8a% §2° B2V Re% Sab Ga® el Agt e S0 5a0 G B2t i 90 eat eavabet et va wa' b~ ia- be'

N
: Project Plan & Achievements 19
b
destructive assignment must be utilized. This, of course, is on the face of it
highly non-logical. But like our first approach, for determinate programs,
i'\ it can be given a logical basis. But once again, if the program must
v backtrack over frame updates, the changes introduced cannot be recovered.
::' However, by extending the system to support what is known as "event
” trailing”, it is possible to both recover the changes and to regain the logical
X semantics, even in the face of backtracking. We will discuss this further
N later in this document.
The most promising approach is the representation of frames by
means of theories in the metalanguage system, which is discussed
" extensively in Part B of this document.
A
¥

We explored the capabilities of our original experimental
metalanguage interpreter (written in standard Prolog) and extended it
substantially in the process. These extensions went in two directions:
Expressing some existing expert systems in the metalanguage, and
beginning to build knowledge base management systems. The ultimate
goal of the latter of course was systems with extensive truth maintenance
capabilities, as described above. In doing this, we developed a powerful
technique whose potential has yet to be fully developed. The technique can
be briefly described as follows. Starting from the traditional database point
of view, we tend to think of a knowledge base as a "flat” item, a collection of
concepts and facts about some particular kinds of objects (e.g., diseases and
human beings.) Moreover, we tend to visualize truth- and integrity-
maintenance mechanisms as "higher-level” entities supervising the
development and change of the base-level knowledge. However, once
theories have been accepted as first-class entities in their own right, the
base-level theory can "talk about” the theories which make up its

R

]
a_ s, ™

.}’. o

LSRRI

Fvd

:-:- maintenance system. Thus the base-level theory can contain a predicate

< integrityTheory(X)

A

0, which "points to" the theory X used to maintain basic elementary integrity

."_: of the database under updates. The database manager can be coded so as to

:: look for such a predicate and use the corresponding integrity theory
-

W whenever an update to the base-level theory occurs. We have included a
. simple example of such a database manager, database, and integrity theory
! later in this report.

In the realm of expert systems, we extensivly explored two systems: a
version of the RAND Corporation's ROSIE-based Inland Spills expert for

T T T T O T R R R R O Uy O P W W U PV T Y Y DV T T R R § 0.0 Bon b Lat bev et ota be- gl ghhi Al gt ahh 0 ot Gl det Bl GaQ St

Project Plan & Achievements 20

Oak Ridge, and a fault finder for digital devices based on work of a student
(K. Esghi) of Kowalski. The latter has particularly improved our
understanding of the needs of the metalanguage system. Both are
discussed in detail in Part B of this report.

Work on the very high-level notion of deriving expectations did not
proceed as far as we would have liked. This appears to be due to two
causes. First, the difficulty in creating a powerful implementation of
metaProlog in which to run serious experiments with knowledge bases.
(We discuss implementation below.) Second, the lack of well-developed
conceptual bases for such "expectations”. In part, the latter is due to the
former. It is to be expected that as one gains experience with sophisticated
knowledge bases built using the sort of conceptual tools found in
metaProlog, that intuitions and concepts suitable to the problem will
develop. However, from the efforts we have expended struggling with these
ideas, we have come to believe that workable notions of expectations will be
heavily domain-dependent. Expectations are grounded in the notion of
change (with non-change as a special case). Human beings carry with
them an immense amount of knowledge concerning which (kinds of)
things normally undergo changes and the sorts of possible changes they
normally undergo. Expectations are less or more formal predications that
change will occur normally. Surpise occurs in one of the following general
situations:

1) A normally unchanging thing under goes some sort of non-normal
change;

2) A normally changing thing fails to undergo change;

3) A normally changing thing changes in a manner not among it normal
A collection of possible changes.

[Note that 2) can be seen as a special case of 3).]

If interpreted sufficiently abstractly, 1-3) categorize all things and
changes. But because of this and because of the vast scale of the world we
perceive, both directly and indirectly, 1-3) are useless in and of themselves.
To render them useful, humans add further knowledge to 1-3). Specifically,
humans add the ability to categorize situations, and within situations of a
given type, knowledge of things rormally change, and what the normal
range of possible changes of these things will be. [It could be argued that

(R R P RS AP AT N T S N U St e R A I i i A S RS
; - . . - A

............

o .

Project Plan & Achlevements

this latter knowledge is the essence of the ability to categorize situations, but
we will ignore the subtlty of this point.] Part of this knowledge would
classed as common sense, and much of it as specific to the particular
situation, and hence as domain-dependent, with the latter usually being the
most useful knowledge. It seems apparent that much of this knowledge is
represented by relatively rigid scenarios or schemata describing the
things and changes occuring in the situation. Application of these
scenarios to a situation involves simple or complex matching of the
situation against the description provided by the scenario.

These scenarios will have greater or lesser generality to the extent that
they apply to many or few situations. Those with greater generality tend
towards the realm of common sense, while those of lesser generality tend
toward the "technical” or domain-specific. =~ Given a description of a
situation type, the problem of deriving expectations is that of selecting an
appropriate collection of scenarios and determining which of them match
the given situation description. Now while simply presenting an adequate
situation description is no mean feat, and matching it against a scenario
scheme is even harder, both of these tasks appear to be much less difficult
than the problem of selecting an appropriate collection of candidate
scenarios The present evidence would seem to indicate that human
beings do not infer this collection of candidates, but rather that the
collection of candidates is directly empirically associated with the situtation
type, either through formal instruction or direct experience. Consider the
domains of medicine and military or economic conflict. There are no
general principles available in medicine which allow physicians to deduce
the course of a given medical situation. The scenarios associated by
physicians with disease states have been hard-won by the medical
community through generations of statistical and clinical observation.
Similarly, the schemata wherewith to assess military or economic conflicts
and suggest their possible courses cannot be deduced in a principled
manner, but is learned througi historical study and direct participation in
events.

This zbility to associate an appropriate collection of scenarios with a
given situation is clearly a form of expertise. As such, it will exhibit all the
well-known difficulties of acquisition and formalization exhibited by other
forms of expertise such as fault diagnosis. In all likelihood, the problem of
situation assessment is much worse than that of fault diagnosis, both
becuase more information must generally be processed, but also because
the conceptual basis of course-of-events description and prediction is much
less well developed. (More people can function as successful

BN

NN I,

PR TR RN AR AN RN Cag iyt b A, AR AR RN R AN I R RN RS A W TR EN I NRE . 88" 8,070 0 Rop 0,00 0 8.8 8.8

Students & Publications 22

- = = .

diagnosticians, correctly determining the causal basis of a faulty state,
than can function as successful prognosticators, correctly determining the
' possible outcomes of a normally well-described state of affairs.)

4. Students & Publications.

Students

Hamid Bacha D~ 12/87

Aida Batarekh PD ~ 12/87
k Kevin Buettner MS ~ 12/85

llyas Cicekli PRD ~ 5/88

Keith Hughes MS ~ 5/86

Andrew Turk BS ~ 12/86

Tobia Weinberg MS ~ 5/84

Publications \

Refereed Journals
+ K.A. Bowen, Meta-level programming and knowledge representation,
New Generation Computing, v.3 (1985), pp.359-383.

[l B

y Refereed Conferences

K » K.A.Bowen & T.Weinberg, metaProlog: A metalevel extension of Prolog,Proc.

A 1985 Symp. on Logic Programming, Boston, 1985.

' + K.A.Bowen,K.A.Buettner, |.Cicekli, A.K.Turk, The design and implementation of a
high-speed incremental portable Prolog compiler, Proc. 3rd Int'l Logic
Programming Conf., London, 1986.

. » K.A.Buettner, Fast decompilation of compiled Prolog clauses, Proc. 3rd Int'l
Logic Programming Conf., London, 1986.
« AK.Turk, Compiler optimizations for the WAM, Proc. 3rd Int'l Logic
Programming Conf., London, 1986.

: Invited Conference Talks

; + K.A. Bowen, Meta-Level Techniques in Logic Programming, Proc. Artificial
Intelligence '86 Conf., Singapore, March, 1986.
« K.A. Bowen, New Directions in Logic Programming, Proc. 1986 ACM Annual
Computer Science Conference, Cincinnati, 1986.
+ Workshop on Meta-Level Architectures & Reflexion -- K.A. Bowen

o invited; however, schedule problems prevented participation.

.
0
’

oy AR N

------ E WP L L N T LY TR TS v e . ™ e w R 1 LS e) (
-r\‘ , rﬂ_,&__,‘ . 8 .f A . -.‘w- o ..-.»\.-_ } . .-.we, .-_“.-,_,5.-...-,“.‘_. K -r__.- a

I3
“

Part B 23

Part B. metaProlog: Design and Application

Contents t
}

1. Introduction 3 :
2. Meta-level Programming and metaProlog 28 4
3. The metaProlog System 35 3
4. Quantification and Naming: Language Foundations 43 3
5. Programming Examples: Poirot 53 A
6. Programming Examples: Bottom-Up Parsing 61
7. Co-routining and Parallelism &4
8. Programming Examples: Inland Spills 67 y
9. Programming Examples: Circuit Diagnosis %)
10. Frames and Arrays 91 '
11. Programming Examples: Truth Maintenance
12. A metaProlog Simulator 117 :
13. Semantic Foundations 138 -
14. Implementation Considerations 146 '
References 150 K

(Parts 1-7 were written with Tobias Weinberg)

...

.
R - - . R R R R SRR R ORI ST SR I A Y BT B SRy
e P \"-."-. A ORI CS LRI AT SNy AT \'\, Lol

o

X Introduction: Part B 54
2.

b

\ 1. Introduction

[}

Prolog has many attractive features as a programming tool for
artificial intelligence. These include code that is easy to understand,
R- programs that are easy to reliably modify, a clear relation between its
- logical and procedural semantics and efficient implementations.
However, we perceive several shortcomings, chief among them being
difficulty in representing dynamic databases (i.e., databases which
change in time) and an apparent restriction to backward chaining depth-
first search using backtracking. Our intent in this paper is to discuss an
extension to Prolog which preserves its attractive features while curing its
ills. Before we proceed, let us examine more closely both the advantages
and disadvantages of current Prolog systems.

FPE

Fs ¢ (lear, easily understood code:

Prolog programs consist of assertions a:«l rules. The assertions
can be regarded as a database of explicit extemsional facts and the
rules can be regarded as serving two functions: (i) extending the
explicit database by allowing the intensional definition of some data, and
(i1) defining derived relations over the primitive data. Both the
assertions and rules have a clear logical interpretation which allows the
programmer to proceed in a mode which amounts to defining or
) axiomatizing the relations of concern to the program. Coupled with a
. reasonable discipline of commentary and self-descriptive names for
o variables, predicates, etc., this declarative reading makes Prolog
programs very easy to understand. On the other hand, the assertions
and rules also have a natural procdural interpretation in which the
:. rules describe methods for reducing the search for a solution for one
:-; problem to the (joint) solution of other problems, and the assertions
‘ describe immediately solvable problems. This interpretation also makes
s it very easy to understand the computational intent of Prolog programs.

PR PP A

ol ol g ot oy g

Introduction: Part B

¢ Modular, easily modified programs:

Each Prolog assertion or rule is implicitly governed by a sequence of
universal quantifiers binding all of the variables which occur in it. This
limits the scope of any Prolog variable to the assertion or rule in which it
occurs, and hence there are no global variables in Prolog programs. This
introduces a strong modularity in Prolog programs. A new (derived or
primitive) relation can be added with impunity since the only variables
it can affect are its own, not any of those belonging to existing
relations. An existing relation can be modified and the only potential
effects are upon those relations which call it, or which call relations
which call it, etc. Among other things, this enables the programmer to
practice a strong data encapsulation discipline.

* Well-developed logical semantics:

The need for a well-developed reliable semantics for programming
languages is widely recognized. Since the clauses of a Prolog program
are explicitly viewable as logical formulas, Prolog programs inherit on
their face the classical semantics of mathematical logic. The discipline
of formal logic has developed over the past 2,500 years as the basis of all
scientific thought. As such, the semantics of Prolog is quite close to
normal human scientific thinking, a definite advantage to the
programmer's ability to understand Prolog programs. Moreover, the
mathematical machinery for reasoning about collections of logical
formulas has been well worked-out over the past 200 years, providing a
powerful tool for formal -easoning about (and ultimately certification of)
Prolog programs.

25

Introduction:

e Efficient implementation:

Interpreters and compilers for Prolog have been produced which
rival the efficiency of LISP interpreters and compilers for comparable
code. These systems have been produced during the relatively short 10
year span of Prolog activity and are largly university research efforts
rather than full production grade systems with associated program
development environments. Commercial grade systems are just
beginning to appear, and it is to be expected that further developments,
such as optimizing compilers will appear. Many obvious optimizations
can be implemented as source-to-source program transformations (e.g.
macros). Such transformers or macro processors are easily written in
Prolog itself since it is a superb symbol manipulation language.

¢ Difficulties in representing dynamic databases:

As we will discuss more fully in Section 2, many artificial
intelligence applications demand facilities which amount to an ability
to dynamically manipulate databases. In order to take advantage of the
natural deductive machinery of Prolog, the most natural way to
represent a database in Prolog is by means of a set of assertions and
clauses. However, most Prolog implementations do not provide any
method of segmenting the database, much less viewing such databases
as first-class objects which can be modified and passed around. To
meet this difficulty, almost all implementations of Prolog have provided ad
hoc extensions to the basic logic programming paradigm which allow for
dynamic modification of the program database by the program itself.
But since the database is the program, these facilities have an effect of
modifying global variables and data structures. In many cases, this has a
catastrophic effect on the first three of the virtues listed above: The
program becomes very difficult to understand, reliable modification of
the code becomes very hard to accomplish, and the logical semantics is
utterly destroyed. Moreover, even execution is affected. Since these
dynamic modification facilities affect the program database itself, it is
extremely difficult to garbage collect the space which should be
recoverable from retracts from the database. (We know of no system
which even tries.)

N v ol)

P v

EAPNENCAON,

o & oL

CoL N Y,

[}

Introduction: Part B

e Apparent restriction to depth-first search control:

Standard Prolog implementations utilize top-down depth-first control
coupled with chronological backtracking to explore the search space for
a given goal, while many artificial intelligence problems seem to demand
other search methods. In part, this apparent difficulty is due to a
problem in point of view. DPure LISP itself has only left-to-right
evaluation and function invokation as available control mechanisms.
What one does is to write deductive interpreters which utilize the
appropriate control structures. The same is easily done in Prolog. The
programming virtues of Prolog listed above make the writing of such
interpreters a relatively pleasant task.

The conflict between the logical semantics and the representation of
dynamic databases was perceived by Bowen and Kowalski [] who
proposed a solution based on incorporating portions of the
metalanguage of Prolog into the system itself. The immediately relevant
consequence of this proposal was that the resulting system provided for
multiple, alternative program databases (essentially a notion of context)
in a setting which still preserves the logical semantics, yet which
provides exactly the tools necessary for the dynamic character of artificial
intelligence applications. By preserving the logical semantics, the
amalgamation also preserves the practical programming virtues of
clarity, modularity, and ease of modification.

The following sections report on the results of an on-going effort to
both develop metalevel programming methods and to build a system which
supports them. The system is based on the proposal of Bowen and
Kowalski, but goes considerably beyond what they contemplated. After
describing the basic outlines of the system, we will illustrate both the
approach and the use of the system in several examples, including some
which indicate the ways in the which the shortcomings of Prolog
mentioned above are overcome.

27

88 atated

LIt 2.5

O NGO 3 Frres

v
P

LAWY Y S

D

ALWSY

e A
NI

* W \J O

X et 0l el 0l il 2 0 0 a0 (0 'Satimat 4’ wuy VWOV VIV TT oo) et

Meta-Level Programming

2. Meta-level Programming and metaProlog.

[t is important to make clear our notion of meta-level
programming. Our point of view stems from that of classical logic.
Early on in the study of language and reason, it was discovered that
the distinction between use and mention of linguistic entities was
crucial, and this developed into the object-level/meta-level distinction of
current mathematical logic. Briefly, one distinguishes between the formal
language being used to conduct some (unspecified) axiomatic investigation
(the object language) and the language used to carry on any discussion
about the object language (the metalanguage). In the full setting of
traditional mathematical logic, the metalanguage must be powerful
enough to discuss not only the syntactic properties of the object language,
but also the semantic (set-theoretic) structures used in interpreting the
object language. However, for many purposes (including those of this
paper), the metalanguage need only be powerful enough to discuss the
combinatorial syntactic properties of the object language. The essential
point is that the relations of the metalanguage are about the syntactic
entities of the object language: the variables of the object language range
over various syntactic entities of the object language. In contrast, the
variables of the object language cither have no specified range (when it is
viewed as a formally uninterpreted language) or range over the entities
(possibly extremely mathematically complex) of some specified set (when
the object language is treated as being interpreted).

Properly viewed, an ordinary Prolog interpreter is already a meta-
level object. For a Prolog interpreter is a particular kind of theorem-
prover, and theorem-provers are meta-level entities. The object level
consists of a formal logic which is usually (a fragment of) ordinary first-
order logic. This fragment is made up of a language and proof predicate.
The latter describes which formulas of the language are consequences
of sets of other formulas of the language. Most proof relations are
composed from more primitive immediate consequence relations. This is
the case for the proof relations used in theorem-provers. The meta-level
of a theorem-prover is concerned with the manipulation of sets of object-
level formulas in the secarch for a collection of formulas which witnesses
the derivability of a given ygoal formula from a given set of axiom
formulas. The prover proper s a meta-level object because its variables
range over formulas (and other syntactic classes) of the object level
language. The nature of the prover (ie., the structure of its algorithms)

.............

L ; Tea N e N T e e e e e e , NPT SRR R AR AP
Y R e T e e T e e e e e T AT e T A e
.. 3 . n A . e

. -

28

-

P Ll

25

LA G

Coeah S U] K

".~t\l)"l" .l-

P ——
8 .
[

Cassay

.'?;’ft"

P d

meta jevel

object level

Meta-Level Programming 29

is obviously dependent upon the nature of the immediate consequence
relations of the object level formal logic together with the nature of the
allowable methods for composing these relations into proof relations
ii.c., the object level deduction rules). Figure B.2.1 illustrates the situation.

Real Prolog collapses all three of these levels

logical variables’ are mentioned here; eg., vart'X)is an
assertion at this level; X' is ML name of X from ML;

Real Prolog Proofs

™ terms of M‘\iL
containing names

o
€ MML: metalevel for ML + ML rules + ML proofs >\ ML v e s

" .
m "h,“ of L syntax items
||'
h

\"\s\s\\\\\\\\\“‘HL“\\\\‘\\\‘\\\\\\Hn\\\\\‘\\\\\‘-

Pure Prolog Proofs: |“] My, ,
psuedo-proof: ML terms that look like object level mlb
proofs, but contain ML variables ranging over terms of L ML proofs

logical variable< used

,‘% here: “find term X
—————such that p(X 1s provable
@uannguage for L + Rules + Proofs "L
o V4 LN
7

\\\\\\\s\\sssy\\s‘\\\\\\\\\

(e g., language of arithmetic)

AR R R R R NI N UL UL U UL SR UL U N UL N N L WA}

Deduction 2 Proofs \f
Rules

e In an expression such as means: find a sequence of
p(X) :- nonvar(X), call(X). psuedo-proofs (certain terms
the variable X is being both used of ML) satisfying a certain criteria
and mentioned. It probably should (which reflects the proof rules of L)
pr(;;z;r)l):'.:e()::latrt(egx')' call(X0, Note that the vqriab[e "X"is being
used, not mentioned, here.

ML must contain names for all the concrete syntactic items of L. For example,

if the lowercase first letter of the Roman alphabet is an individual constant of

[., then ML should include a name for it suchas “'a’ . [tis reasonable to

adopt Quine’s convention that concrete symbols of L are used autonomously as
names for themselves in ML. Sim:lar remarks apply to ML and MML,;

but then there may be confusion about the use of a symbol from L: an occurence
of "a” in an MML expression would really be as a name " 'a’ " " in MML for the ML,
name " 'a’ " of "a” as a symbol of [..

The MetaLevel Structure of Real Prolog
Iirure B.2.1.

O T O U TN TN W OW T U UR TR g 8% 472 @'2 8%2 A's §'2.8"2 8°2. 2" ‘s g¥g §° "a fia 8 8°a 84 4 BB 4.0 8 0 18" Aad Lot Aal- ol Jat o bn? bat Sak hyS Aab Br it 4

LA

Meta-Level Programming 30

Al

The formal logic constituting the object level of Prolog is the
fragment consisting of the Horn formulas together with the Resolution

E Rule as its sole rule of immediate consequence. The Horn formulas have
™ the forms

oA

\Y (Vx1)..(VxplA] & ... & Ay, — B] (2.1)
-':.

> (Vx1)..(Vxp)B (2.2)

o
o where B and the Aj are atomic formulas and all of their variables occur
.-: among Xi,...,.Xm. It is important to note that this is a formal logic and
r. hence that its variables are uninterpreted: there is no pre-selected
N domain over which they range. The goal formulas proved by a Prolog
y system have the form
7
o (Vy1)..(WVypllCq & ... & Cp,], (2.3)
v
= where the Cj are atomic formulas. The first step taken by a Prolog
s interpreter (or theorem-prover)is to replace the ecxistentially quantified
:: object-level variables of (2.3) by existentially quantified meta-level
\ variables, thus:

'\-

. C1(Y1,...YK) & ... & Cg(Yq,...,Yk), (2.4)
: where Ci(Yy,...,YK) indicates the result of replacing the occurrences of
. ¥1,---¥k in Ci by Yq,...,Yk, respectively. Two points are worthy of note

here. First, while the object level variables yj are uninterpreted — have
o no specified domain over which to range — the meta-level variables Yj

Y are interpreted — they range over the domain of (syntactic) terms of the
Y object language. Second, the quantification in (2.3) takes place locally in
P that formula, whereas the quantification of the variables Y; occurring in
. (2.4) takes place globally in the body of the algorithm for the Prolog
a interpeter. In effect, the Proloy interpreter takes a constructive approach
- to its attempt to prove (23 1t will attempt to find concrete terms replacing
;'_l Y1,...Yk for which (2.4 15 provable,

:.' The manner in which the axiom formulas (2.1) and (2.2) are
‘ employed reflects the Prol : interpreter’'s reliance on the Resolution
- Rule of inference. At any time before completion of the deduction (or

abandonment of the attempt:, the interpreter has before it a current goal

vad U.0° P pn et AL G0 1M 2t 2t 2% a0h N a0 5 fdia® o lav Aol 4 Al Sl ok *) A A'‘RA A M S g% B e hon SRa Rta Ste &% &Ua sty Alets

Meta-Level Programming 31

of the form (2.4). First it sclects one of the C; as the next subproblem to be
treated. Secondly, it scarches the program or database for a formula of one
of the forms (2.1) or (2.2) such that the predicate and number of arguments
occurring in B are the same as those of the selected C;. Third, it strips the
quantifiers ("x1)...("xp) from the formula (2.1) or (2.2), generates new
meta-level variables Xi,...,.Xp, and replaces the variables xq,...,xp in (2.1)
or (2.2) by Xi,...,Xp, respectively, yielding

AL(X1,...Xp) & ... & Am(X],...Xp) = B(X1,...Xpn) (2.5)
or
B(Xj,...Xp) (2.6)

Fourth, it attempts to match B(Xi,...,.Xp) with C; using the Unification
Algorithm (which may cause binding of various meta-level variables). If
this attempted match succeeds, the interpreter modifies the current
goal:

If the matching formula was (2.6), the subproblem C; is simply
deleted, while if the matching formula was (2.5), C;j is deleted and is
replaced by

A1(X1,. . Xp) & oo & A(X1,...Xp) 2.7)

All of this is work that takes place at the meta-level, being syntactic
manipulation of object level formulas. If the attempted match by
unification does not succeed, the intepreter seeks alternative formulas i
(2.1) or (2.2) to the selected one from the database. If at any time, the
current goal becomes empty (i.e., all atomic formulas or subproblems s
have been deleted by matches against formulas of the form (2.6)), the 1
original attempted deduction of (2.3) from the program succeeds. On the
other hand, if at some point no matching formulas (2.1) or (2.2) for the
selected subproblem Ci can be found, the interpreter backtracks, undoing
variable bindings and subproblem replacements, and explores
alternatives to choices it made previously in seiecting matching formulas
from the database. If it ever backtracks all the way to the original goal
(2.3), it quits, concluding that (2.3) cannot be deduced from the program
database, and the attempted deduction fails.)

PP PP

P ln® e e At 0u Ba® el Sa" fa* Be® dh® St be? St k)

; E Meta-Level Programming 32
'S
‘7Y
N . :
Thus a Prolog interpreter really defines a metalevel (or syntactic)
< relationship between sects of formwulas (the program database) and goal
N formulas, namely the relation that the goal formula is deducible from the
:*:: program database. However, as commonly implemented, pure Prolog
P interpreters essentially incorporate the program database as a fixed part
. of the interpreter, and thus really define a parameterized set of a unary
:: predicates applying to goal formulas. The fundamental operator of
?.j standard Prolog systems is thus a one-place operator (usually written
Y call(...)) which invokes a search for a deduction of its argument from the

implicit program database parameter. The heart of the proposal set forth
by Bowen and Kowalski (1982) was to utilize a system implementing

;‘ the full deducibily relation described above. Such a system would have
’ metavariables which not only ranged over formulas and terms, but would
- also allow the metavariables to range over sets of formulas (called
» theories). The fundamental operator of such a system is a two-place
\f operator, usually written demo(___ , ...), which invokes a search for a
. proof of the goal formula appearing as its second argument from the
13 theory (or program) appearing as its first argument.

X

" In such a system, the only analogue of the standard Prolog
b database is the global database containing system built-in predicates. All
o other databases are the values of Prolog variables and are set up either
o by reading them in from files or by dynamically constructing them using

system predicates. Besides the system predicate demo(___,...), the
a system predicates include addTo(, ’) and dropFrom(__
— s) which build new theories from old ones by adding or deleting

: formulas. Thus for example, one might find the body of a clause
(formula (2.1)) containing calls of the form

3 .., addTo(T1, A, T2), demo(T2, D),... (2.8)
\ where the theory which is the value of T2 has been constructed by the
’ . earlier calls. The effect of (2.8) would then be to construct (in an efficient
'}:: manner) a new theory T2 resulting from T1 by the addition of the formula
.':fz A as a new axiom; then the system invokes a search for a proof of the
2: formula D from the theory T2. Since demo implements the proof relation,
9 such programs as (2.8) preserve the logical semantics of Prolog while
providing for the dynamic construction of new databases from old.

The correctness and completeness of an implementation of demo are
expressed by what were called linking rules by Bowen and Kowalski:

Meta-Level Programming

If demo(T, A), then A i1s derivable from T. (2.9)
If Ais derivable from T, then demo(T, A). (2.10)

These rules provide the justification for the implementation of calls
on demo in the abstract metaProlog machine as context switches. In
essence, at most times the machine behaves as a standard Prolog
machine with the current theory (the analogue of the usual fixed program
database) indicated by a register. When a call demo(T, A) is encountered,
the database (theory) register is changed to point to T and a new search
for a deduction of A is begun. Thus the efficiency of standard Prolog
computations is preserved and the overhead of meta-level computation is
localized in the construction of new theories from old. This method of
reflection has been utilized heavily in constructing the abstract
metaProlog machine on top of a primitive storage management
machine. This approach provides a meta-level programming methodolgy
suitable for constructing other methods of exploring the search space of
derivations of A from T besides the top-down depth-first approach of
standard Prolog. Exploitation of this approach will ultimately provide the
meta-level programmer with a library of search strategies which can
be (programmatically) invoked depending on the particular problem and
context.

Many AI applications require the production and consumption of
large data structures, for example lists, and many of these can be of a size
which strains or exceeds the resources of the hardware. However, it is
often the case that the entire data structure need not really be constructed
in its entirety. Rather, the consumption operation could process it
piecemeal, either ultimately in its entirety, or even only partially (as in
the cases involving search for a component with a particular property).
To provide for such a style of programming, we have explored two
constructs which allow for the description of co-routined production and
consumption processes:

enumerate(Template, Goal, Result) (211)
and

streamOflGoal, Resulty (212)

From the abstract point of view, enumerations and streams are

33

e,

E:

S %S ¥ Y Y
PPN Y rhd

Meta-Level Programming

first-class objects equally on a par with terms, formulas, and theories.
The actual representations of enumerations and streams are as virtual
lists which can be potentially infinite. Thus in both enumerations (2.11)
and streams (2.12), Result is logically a list which may be extended as
consumption processes attempt to access its tail. In the case of
enumerations (2.11), Result is the stream of instantiations of Template
in the environments corresponding to successful solutions of Goal. Thus
it is simply a "lazy” version of the usual Prolog setof operator with the
variation that if there are no solutions at all of Goal, (2.11) succeeds and
binds Result to the empty list. In (2.12), Goal is expected to be a
determinate tail-recursive predicate which constructs the list Result.
Intuitively, at each recursive step, Goal places another element on the
list; the system evaluates this lazily, suspending furthur action on the
recursion of Goal until some consumer attempts to access the (as yet
undeveloped) tail of Result.

In both constructs above, it is desireable that Goal be allowed to
contain stream variables from other such calls with the consequence
that determinate and-parallelism be implemented in the system. To allow
the system to easily get this straight, such streamOf and enumeration
calls must be wrapped in the “"simultaneous" operator construct, as for
example:

simultaneous{streamOf(G, L), streamOf(H, K)} 213

where presumably L occurs in the goal H, and K occurs in the goal G. In
the present project, the and-parallelism was implemented on sequential
hardware in a rather standard co-routining method amounting to time-
sharing of the abstract metaProlog machine by the cooperating calls. The
design of the abstract machine, however, would allow the cooperating
calls to be executed on separate (even heterogeneous) processors in a
multi-processor environment (whether tightly coupled or loosley
distributed on a network). We discuss this in more detail in Section 7.

34

metaProlog System

3. The metaProlog System

The metaProlog system is designed to be syntactically compatible
with the Edinburgh system, to preserve the standard logical semantics,
and to incorporate the full two-place proof relation. Thus, while
syntactically quite similar to Edinburgh Prolog, metaProlog provides a
quite different set of built-in meta-level predicates and allows the
metavariables greater range than the Edinburgh system.

There is one major syntactic difference between the two systems. For
reasons which will be made clear when we discuss quantification, we
require that the implicit universal quantifiers on clauses be made explicit.
Thus, for example, the Edinburgh clause

append([Head | Taill, RightSeg, [Head | Result_Tail]) :- (3.1)
append(Tail, RightSeg, Result_Tail).

would be written

all [head, tail, rightSeg, result_Tail] :
append([head | tail], rightSeg, [head | result_Tail]) :- (3.2)
append(tail, rightSeg, result_Tail).

If the clause contains only one variable, the list brackets in the
quantifier can be dropped. Additionally, we allow the programmer to
optionally use <— instead of :-, and to connect the literals in the body of a
clause by & instead of comma. Thus the Edinburgh clause

p(X) :- q(X),r(X). (3.3)
might be written

all x : p(x) <— q(x) & r(x). (3.4)
An expression which contains no meta-variables (but may have object-
level variables occurring listed in the quantifer) is called a closed

formula. Atheory is cither the empty theory (designated by
empty_theory) oris of the furm

A&U (3.5)

35

1 'R N .8 9.0 49 4 ‘Qag D il S g ¥ g R 6.0 1o i 00 o Wap Bay o0 8.0 8o ¢ o9 o0 S Ul o Vo $.0 Yok Vap Vol Dol Safl Saf 0.0 o8 sad taf Sef Nal Sal Vol Sal ¢,

.: metaProlog System 36
4
e
L)
.2 where A is a formula and U is a theory. A theory is a definite theory if
3 all of its formulas are closed. (Note that quantified variables may be
2 present in definite theories.) Theories contained freely occurring logical
A variables are called indefinite theories. [Whether or not the programmer
is allowed to directly write free logical variables is a matter of design
;’_\' controversy. But indefinite programs can always be created by programs at
Y, run-time.]
L)
| The proposed built-in predicates of metaProlog include most of those
N of Edinburgh Prolog with the exception that all those concerned with the
N "program database” are excluded. Instead, a two-place demo, a three-
_:: place demo, the two three-place predicates addTo and dropFrom, the
A . . . : .
binary predicate axiomOf, and the unary predicate current are to be built-
in predicates of metaProlog. Additionally, the two three-place predicates
- setOf and streamOf, together with the predicate simultaneous are
" added. These latter three built-in predicates will be discussed in Section 7.
. The specifications of the former predicates follow.
: demo(Theory, Goal)
":.: This call invokes a subsidiary (Prolog) computation which attempts
2 to derive Goal on the basis of the program Theory. If Theory or Goal are
" are not fully instantiated, meta-variables occurring in either may be
< bound if a successful computation can be found.
:f: Calls on demo support a convenient idiom for describing implicit
» unions of theories. Specifically, a call of the form
' demo(Theoryl & Theory2, Goal) (3.6)
is logically equivalent to the call
l‘
A
™. demo(Theory3, Goal) (3.7)
N
'~ where Theory3 is the ordered union of Theoryl and Theory2 in the
'{ following sense: If theories are regarded as the ordered list of their
axioms, then Theory3 satisfies
. append(Theoryl, Theory2, Theory3). (3.8)
-
N However, the system does not physically create Theory3, but regards the
J
Cal
Lal
;2'#'?-’2.«.1’-'.""-'.’*""'-C'-"'l-‘.-’ G 2 R L Sy Ly R T A G

s e BT R RT R TRATRTRAT AT N T RTE T e

] information, causing various registers to be set, and then invokes the
machinery corresponding to the two-place demo. Initially, the system
will support the following control expressions:
depth(N)

‘.J\." AT \‘.\-:___\ -'..\J' .. N e

metaProlog System

expression Theoryl & Theory2 as a description of a virtual theory. In
effect, when searching for a rule or fact to apply to a selected subproblem
of the current goal, it first searches Theoryl for a candidate, and only on
failing to find such a candidate in Theoryl, it then searches Theory2.
Another usage supported is the explicit indication of the axioms of the
theory. Namely, if it is desired to search for a deduction of G from
Al,...,An, this is achieved by the call

demo([Al,...,An], G). (3.9)

(Internally, theories are represented in several forms. The simplest is
just that of a list of axioms, with no special indexing. Retrieval from
such a theory amounts to a linear search of the list. Thus, for all but
relatively small theories, computation from such a theory will be
intolerably slow.)

The two usages can be combined, as in the calls:

demo([Al,...An] & Theory2, Goal)
(3.10)
demo(Theoryl & [Al,...An], Goal).

demo(Theory, Goal, Control)

This call causes a subsidary (Prolog) search for a deduction of Goal
from Theory where, however, the search may be modified by information
supplied in the control expression Control. As with the binary demo, if
Theory or Goal contain uninstantiated meta-variables, these variables may
be bound by a successful computation, though some control expressions
may cause such meta-variables to remain uninstantiated even after a
successful completion of such a call. As with theories, control
expressions may be combined, as in the call

demo(Theory, Goal, Controll & Control2). (3.11°

In effect, a call on the three-place demo first analyses the control

37

1

v Yy

Jad'e 8'a die tin At ple 2% ata S ta'AR A 20 Sat tat AR L Gal Sl Aol oD 6 ddot el Al Ol S0 0.0% 0 4 L AN 1T0 2000 a0t A SR gtS a0 o £ aRR TR AP SR SRR A SRR gn e gNG ohe p¥0 oid

g metaProlog System 38
EE

This control expression sets a depth limitation of N on branches of
N the search tree. If a computation exceeds this depth, the branch is failed
and backtracking occurs.

proof(P)

This control annotation causes the system to accumulate a
representation of the proof branch in the (uninstantiated) variable P,
allowing the programmer to extract a successful proof for furthur
processing, such as providing explanations, etc.

branch®)
This control expression causes the call
demo(Theory, Goal, branch(B)) (3.12)

to succeed in all cases, binding the uninstantiated variable B to the left-
most branch of the search tree. Note that in the case that the left-most
branch is theoretically infinite, the call will still succeed due to depth
bound limitations of the system. Backtracking into this call will cause B
to be bound to successive branches of the search tree. As discussed in
Section 7, the call

setOf(B, demo(T, G, branch(B)), Branches) (3.13)
would cause Branches to be bound to the (lazy) list of all branches of the
search tree for G relative to T in the order that they are explored by the
system.
bottom_up

4
‘ Use of this control expression allows a limited amount of single-step
y bottom-up processing to take place. The call

demo(T1, reduct(T2), bottom_up(T3))

constructs the reduction T2 of T1 by T3. By definition, T2 will consist of

all reducts R' by T3 of rules belonging to T1, where if R is a rule with
head H and body B, the reduct R' of R by T is a rule whose head is H and

. on

S 'p. - "l.'--.".'_f‘_' r.‘. _.- \"'-' ‘..r \(.-1
N e g N, AT

metaProlog System 39

whose body B'is obtained from B by resolving some literal of B with some
factin T.

) user_choice

; Use of this control expression allows the user to specify the choice
S function for selection of the subproblems during the main loop of the
interpreter in the style of Pereira[]. Consider the call

demo(T, G, user_choice). 3.14)
The system will expect to find in T an assertion
user_choice(UC) (3.15)

as an axiom, where UC is a (small) theory containing clauses defining
the predicate

choose(Goal, SubProblem).

Here Goal will be a representation of the current system goal and
SubProblem will be bound (when this is run) to the selected subproblem
from this goal. When running (3.14), at each cycle of the search for a
proof of G in T, the system will run the subsidiary problem

PPN

demo(UC, choose(Goal, SubProblem, Remainder)) (3.16)

with Goal bound to the current goal in order to select the next
SubProblem and to indicate the Remainder of the Goal left after this
selection. Use of this facility will be illustrated in Section ##.

confidence(C)

While not properly a control description, use of this expression
allows for the propagation of confidence values or certainties of the
programmer's design. The system provides general methods for
attaching terms representing confidence factors to rules and assertions
of theories, and for designating predicates for carrying out the propagation
of these factors during deduction, as follows. If R is a rule or fact intended
to to appear in theory T with confidence C, insertion of the expression

O

) metaProlog System 40

C:R.

4 in the source file used to generate T will cause the rule R to be recorded in
T and in addition, causes the fact
'Sconfidence'(R, C)

to be recorded in T. [The actual implementation differs somewhat from
this.] Such rules with confidence can also be used in the built-in addTo
described below. Assume that normal Prolog control is being used.
Operation of the system with the call

demo(T, (Al & A2 & ... & An), confidence(C))

proceeds as follows. Assume that A <— B is recorded in T with confidence
Cr, that A matches Al via the substitution S, that the result of applying S
to B is B, and the result of applying S to A2 & ... & An is G". The system
first solves the goals

demo(T, B', confidence(CB))

and

demo(T, G", confidence(C")).

Then the system solves the goal

demo(T, '$confidence'(Confi))

and finally solves the two goals

demo(Confi, '$imp_prop'(CB, Cr, CA)

and

demo(Confi, '$cnj_prop(CA, C', C)).

Thus the programmer is expected to supply (as a sub-theory of T), a
theory Confi in which he or she defines the predicates 'Simp_prop’ and
'Scnj_prop' for propagating confidence factors.

AL .

e S Y PR P I I PRI BUCL RN ~
.‘ --..-- ..\.‘n-. ’ ‘. .~ ..-):: -.. J‘ 4, {. “'(. J.\-

metaProlog System

This completes the list of currently contemplated control expressions.

addTo(Theory, Clause, NewTheory)

If Theory is bound to a theory and Clause is a (closed or partially
instantiated) formula and NewTheory is an uninstantiated variable, this
call causes NewTheory to be bound to a theory obtained from Theory by
adding Clause as a new axiom. What actually happens is that the orignal
theory bound to Theory is physically modified by the addition of Clause,
providing fast access to the NewTheory. The variable Theory is rebound
to an internal representation of the result of dropping Clause from the
theory now bound to NewTheory, in a manner inverse the the common
method of representing arrays in logic. Thus the original theory bound
to Theory is still logically available via Theory, but access toitis a bit
slower. If Theory is not bound to a theory or if NewTheory is
instantiated a run-time error occurs. Note that, unlike the treatment of
assert in conventional Prolog, metavariables occurring in Clause are
NOT converted to universally quantified object variables in the assert
fact or rule. This point will be discussed more fully in Section 4 below.

addTo(Theory, Clause, NewTheory, Pointer)

This call is similar to the three-argument form of addTo. Here Pointer
should be an uninstantiated variable. Running of this call will cause have
the same effect as the three-argument form of addTo with the additional
effect that Pointer will be bound to a representation of an internal pointer
to Clause as an element of NewTheory. As will be discussed below, the
value of pointer can be regarded as a meta-level name of Clause.

dropFrom(Theory, Clause, NewTheory)

Under the restrictions of addTo, this call causes NewTheory to be
bound to the theory resulting from the deletion from Theory of the first
occurrence of an axiom of Theory which matches Clause. The internal
representations and run-time errors are similar to those for addTo.

axiomOf(Theory, Clause)

This call succeeds if Clause has been recorded as an axiom of Theory.

A e g e e T e L

R AT I A

o

B
v

£
Vet]

(<

' v
PN

v

\ -.'.r. '

s

P A

3
2

) OO

" l'. |.- l.. l’.."..-" B

T el

o,
<.
L
",
D
j o

tag 09 9.9 fof Nag XY .3 4.8V, 4op 8,09 y TN S YL T g av ‘ta') ta ot . vy a8 o

metaProlog System

If Clause is uninstantiated, it will be bound to the first axiom of Theory.
Backtracking into this call will cause Clause to be successively bound to
the axioms of Theory. Theory must be bound or a run-time error occurs.

axiomOf(Theory, Clause, Pointer)

This call succeeds if Clause has been recorded as an axiom of Theory
and Pointer is a representation of an internal pointer to Clause as an
element of Theory. Theory must be bound or a run-time error occurs.
Either Clause or Pointer or both may be unbound, as in the two-argument
version of this predicate.

current(Theory)
This call is equivalent to the Prolog definition

demo(Theory, current(X)) :-
X = Theory. 317

Note that axioms of the current theory can be directly accessed via the
goal

<—current(Theory), axiomOf{Theory, Clause). (3.18)
consult(<theory>,<file>) and consult(<file>)

If <theory> and <file> are both constants and <file> is an
appropriate operating system file name, the first call causes the clauses
listed in the file to be added to the end of the theory currently recorded
under the name <theory>. If <theory> has not yet been established, it is
taken to be the empty theory. The second call is equivalent to
consult(<file>, <file>).

Other meta-level built-ins will be described in succeeding sections and
in the system manual when it becomes available.

.

e
L

42

AT AT ._;‘.._..;.-_-‘.-F‘--..-_v.-_ [PSR SN . tata® T L T
A A R T L O IS S N R Rt T R AN D

Quantification & Naming 43

4. Quantification and Naming: Language Foundations

Subsection 4.1: Godel's Reflection Construction

In Section 2 we presented our basic point of view regarding the
distinction between object language and metalanguage. In particular,
we pointed out that the metalanguage must contain names for all the
various syntactic entities of the object language as well as variables to
range over those entities. As presented there, it would appear that there
must always be a sharp distinction between object language and
metalanguage. Certainly this is not the case for natural languages such
as English, in which one can carry on discussions of the language in d
itself. That it is also not necessarily the case for formal languages can be ;
seen by first considering the classic constructions of Godel utilized in his
proof of the incompleteness of arithmetic. (Godel carried out his original
proof in the context of Russell and Whitehead's Theory of Types; we will
be content with a version recast in ordinary first-order logic.) The object)
language for this construction is simply a version (almost any will do) of
arithmetic axiomatized in standard first-order logic, say as presented
in Chapter 1 of Shoenfield [1967]. The metalanguage, while not usually
precisely specified, is any language containing names for all the
primitive symbols of the object language and having the ability to
represent concatenation and other primitive syntactic operations;
variables whose range includes the syntactic entities of the object language
are included. The situation is represented schematically in Figure B.4.1.

The technical heart of Godel's proof lay in showing that the roles of L
and M could be essentially reversed (intuitively, that the figure could be
inverted). Specifically, Godel showed that L could function as
metalanguage for a sufficiently large enough part of M so as to include :
that portion of M actually used in discussing the syntax of L. The trick lay ,
in showing that natural numbers, the entities which are the intended
ranges of the variables of L, could be (in a systematic way) used as
names of the syntactic entities of M, and that, given this representation
of the syntactic primitive symbols of M, the basic syntactic relations of M
could be defined arithmetically in L. Schematically, the situation would
then appear as in Figure B.1.2.

L A N R

sl

'l‘l;')

P} .
a Ao

"S- ahe ot “a0e oA o JAR* Ay o] R b B “aadh Y Tl d s B Al Ad ol Sd

Quantitication & Naming 41

L = Peano Arithmetic

Figure B.4.1. Language and MetaLanguage.

The essential point is that via this reflection through the
metalangauge, L has the capability of functioning as its own
metalanguage: Numbers can be viewed in and of themselves, or as
names of syntactic elements of L; and relations may be simply relations
among numbers in and of themselves, or may be seen as relations
between syntactic elements of L. In particular, one could define
(primitive recursively) in L the proof relation for L itself:

proof(t, f, a) is derivable in L
if and only if (4.1)

t is a number naming a (finite) theory t' in L, f is a
number naming a formula f of L, and p is a number
naming a finite sequence of formulas p' of I. such that p'
contitutes a formal proof of f relative to the theory t'.

Smullyan [] has provided constructions of formal languages in
which this sort of self-reference is direct without need of the intermediate
reflection through an extcrnal metalanguage. Indeed, even Godel's
original construction can be viewed as providing directions for building

R Y
.....

e e A o N R S L S

Quantificatlon & Naming a5

the name relation directly.

—

= Peano Arithmetic

~ Figure B.4.2 The Metalanguage Reflected in the Object Language.

. Abstracting from this discussion, we can see that the two
S: essential requirements we must impose on a language L are:

-

- (1) For every appropriate primitive syntactic entity E of L, there
. exists a constant e in [, naming E;

N

-. (11) There exist relations in L connecting the names of the

components of a compound syntactic entity of L with the name of the
entire compound entity. [We will elaborate on these requirements
. below.]

X Before proceeding to sct forth the formal language for the metaProlog
» system, we must entertain some considerations on quantification and

Quantification & MNaming 46

the naming of entities.
Subsection 4.2: Quantification

The logical interpretation of Prolog's theorem prover stipulates that
variables actually occurring in the program's clauses are in fact
implicitly universally quantified object level variables, even though they
are syntactically indicated by metavariables. In using a clause, the
interpreter replaces these universally quantified object level variables by
existentially quantified meta-level variables. The syntactic conflation of
object- and meta-level variables is acceptable for pure Prolog deductions,
but causes difficulties as soon as assert (and retract) are added to the
system. If the expression A contains a metavariable X which is
uninstantiated at the run-time execution of assert(A), there is a natural
sense in which the call assert(A) is incoherent: the formula to be added
to the database is not fully specified. The Prolog approach to this problem
is to once again conflate the existentially quantified metavariable X
with a corresponding universally quantified object-level variable,
actually asserting (all X)A into the database. But there are difficulties in
this approach, since it destroys the logical semantics of clauses in
which such calls occur. Assuming no clauses for p are in the database,
the following two goal statements should be logically equivalent:

- X =b, assert(p(X)), p(d).
- assert(p(X)), X =b, p(d).

But the first fails, since it only adds p(b) to the database, while the
second succeeds, since it adds (all X)p(X) to the database. To avoid such
difficulties, the metaProlog system requires that programmers be
explicit about their intentions, clearly indicating universally quantified
object variables. Thus, to add (all X)p(X) to a theory T, one would write

addTo(T, (all X: p(X)), U).

Note that if the expression addTo(T, p(X), U) occurs in a
metaProlog program clause, X is either a constant or is explicitly
universally quantified by a quantifier on the clause containing this call to
addTo. In the latter case, on entry to the clause, X is replaced by an
existentially quantified variable at a level meta to the clause. If it is not
instantiated when the call to addTo takes place, no change to X takes

Wy

v vy v

v

Quantification & Naming

place. Rather, the formula is viewed as partially instantiated, and the
resulting theory U is also seen as partially instantiated.

Subsection 4.3: Naming

In order for any language M to serve as a metalanguage for another
language L., M must contain names for all the appropriate svntactic
entities of L. Thus, since metaProlog is to serve as its own metalanguage,
it must contain names for all of its own syvntactic entities, just as any
natural language has the ability to name all its own svntactic constructs,
both by description and by quoting. To this end, in metaProlog, constants
act as names of themselves. For ground items other than constants,
metaProlog may provide structural or non-structural names (and
sometimes both). The former are compound terms whose structure
reflects the syntactic structure of the syntactic item they name. The latter
are analogous to proper names in natural languages. In particular,
database references trelative to 1ndividual theones) act as non-structural
(proper) names of the clauses - other theories to which they point.
Facilities for manipulating names should be provided, for example,
methods of obtaining a compound: vame of a compound expression from
names of the expressions components. as well as methods for moving
between a name and the thing it names anal gous to univ (=..) of
ordinary Prolog.

Subsection 4.4: Formal Language Specification

We now will proceed to set forth a formal defimition of the current
design of the metaProlog language. The first step will be to precisely
specify the purely linguistic compounent which we will refer to as L(mP).
Later, in Section 12, we will specify the computational component
operationally as a purely formal mathemetical system. Note that these
definitions are phrased in a language (technical English) functioning as
a metalanguage for L(mP); eventually we will show that mP has
sufficient power to act as its own metalanguage. As discussed in general
above, this metalanguage (technical English) must have syntactic
variables which will range over the various syntactic constructs of L(mP).
The range of the (meta)variables of the technical English metalanguage
must include the logical variables of L(mP). The logical variables of
L(mP) themselves will turn out to function as metavariables for portions of
the L(mP) language. We will use expressions of the form <....> to indicate
these syntactic metavariables of the technical English metalanguage.
Because of this multiple use of meta-levels, including the fact that the

17

.......

AR S
PPN L R S LY Y e

Quantitication & Naming

system mP is intended to be able to function as its own metalanguage, the
possibilities for confusion are rampant. We caution the reader that careful
consideration of the location of the definitions with regard to the
definition’s presence in mP or in the technical English metalanguage of
mP is extremely important. The heavy formalism of this section has
been an important tool for elaborating the system and clarifying the
distinctions. The use of the formalism i1s also motivated by the governing
desire to provide a system which can be seen to possess a logical
semantics.

Definition 4.2. The language L(mP) is specified as follows:

(.1) Any identifier beginning with an alphabetic character is a constant
(irrespective of whether the initial character is upper-case or lower-
case).

(.2) Any sequence of characters beginning and ending with a single quote
is a constant. Single quotes themselves can be embedded in such a
constant by the standard device of repeating them at the point at

which they are to occur.

(.3) Any number (integer or real) in fixed or floating point notation is a
constant.

(.4) Any constant is a name of itself.
(.5) There is a countable collection of symbols distinct from all the
constants and punctuation of mP ; the elements of this collection are

called logical variables.

(.6) Any identifier beginning with an alphabetic character may be used as
a functor symbol (irrespective of the case of th2 initial character).

(.7) Any functor symbol 1s a name of itself.

(.8) Any constant or logical variable is a term. The principal functor of a
constant is itself; logical varmables have no principal functor.

(.9) If <f>i1sa functor symbol and <tl> . <tn> are terms, then

e T

a A

R AN AN KNI AN AR TN K IR LN RN KT IR ol Bos dag B0 0@ o Vot Fo0 V@ Mo tal Sop G20 Waf Sa® ra taf tof bad e ial e

Quantification & Naming 49

<f>(<tl>,... <tn>) (4.3)

15 a term. The functor symbol <f>is called the principal functor of
the term.

(.10) For every term there is a constant of L(mP) which is a name of the
term.

(.11) There are distinguished constants:
empty_theory true demo instance meta_name
among the constants of L(mP).
In a fundamental sense, all of the linguistic expressions of L(mP) are

terms. The definitions which follow effectively single out terms of special

forms to function as specialized syntactic items such as literals, clauses,
theories, etc.

Definition 4.4. The reserved symbols of L{mP) are the following. (Note that
the single quotes are part of the technical English metalanguage -- they are
part of its machinery for naming syntactic items.)

’:’) all’ 'if’ '<_') ':-'7 |&" l"’ '('! |)" ' | '1 '[', ']" '{|’ |}.’ "" '[]')
0, 0,
Definition 4.5. Any term whose principal functor is not a reserved

symbol can be a literal, including logical variables. When a term is used
as a literal, its principal functor is called a predicate name; a literal
consisting of a logical variable alone has no principal functor, and hence
possesses no predicate name.

Definition 4.6. The class of list expressions (or briefly, lists) is defined
recursively as follows:

(.1) [1is alist, callcd the empty list;

(.2) If <L>is alist and <T> is any term, then

T'(<«T>,<L>)

[0 S W U G W Y

SSLSS

SR NN,

-~
L)

Quantification & Naming

is a list.

The formal definition of the language renders every syntactic object
either a constant or a term which is written in prefix notation. Human
recadability and ease of use requires that we provide parsers which sugar
this syntax and allow more friendly expressions for many of the items. To
this end, we will allow '[J'(<T>,<L>) to be written as [<T> | <L>]. In fact,
if <T> and <U> are any terms, we will allow the user to write
N'(«T>,<U>) as [<T> | <U>].

The list

I(<T1>,11(<T2>,1))
can be written as

[(<T1>, <T2>], etc.

Definition 4.7. If <A> is any literal and <c>,<cl>,...,<cn> are any
constants, then

all(':'([<cl>,...,<cn>], <A>)) (4.8)
and
all(:'(<c>, <A>)) 4.9

are both universal assertions. If <A> contains no logical variables,

they are both called facts. All facts are clauses. The literal <A> is also
called a fact matrix.

The sugared syntax allows (4.8) and (4.9) to be written respectively in
the forms:

all [<cl>,...,.<cn>] @ <A>. (4.10)
all <c> 1 <A>. (4.11)

Definition 4.12. The class of woals is defined recursively as follows:

50

atatatallat Beb. DYl ‘b b Pk h ‘Gt Aan G g el 'l A A e Atepie ety Vi %, fa'nh falh fal AR tod Suf Gl Gl S0 B G0 L0 04 G a D A L0 Sl ok A B2

7 Quantification & Naming 5 1
i

-

2

n (.1) The distinguished term 'true’ (which is a literal) is a goal.

\

.

W (.2) If <G> is a goal and <L> is a literal, then '&'(<L>,<G>) is a goal. For
':. readability, goal expressions such as

- '&'(<L1>,<L2>)

- can be written as

! <L1>& <L2>,

" with '&' associating to the right.

-

o

54 Definition 4.13. An implication symbol is one of the symbols '<—', ":-',
- or 'if".
p-. Definition 4.14. If <A> is any literal, if is any goal, if
:f <c>,<cl>,...,<cn> are any constants, and if <I> is an implication symbol,
\ then
. all(:([<cl>,...,<cn>], <I>(<A>,)) (4.15)
A
'
D and
"
*‘

all(:(<c>, <I>(<A>,)) (4.16)

Xl

‘2 are both called universal implications. If neither <A> nor contains
- any logical variables, both (4.15) and (4.16) are called rules. Any rule is a
o clause. The expression <I>(<A>,)is called a rule matrix.

- For readability, (4.15) and (4.16), say with <I> being '<—', are written
£ respectively as:

3 all [<cl>,...,<cn>] @ <A> <— . (4.17)
) all <c> : <A> <— . (4.18)
"

’

Definition 4.19. The class of theories is defined recursively as follows:

(.1) The constant ' empty_theory ' (which is a literal) is a theory.

(.2) If <C> is any clause and <T> is any theory, then

'.- "l ’- -

P /. ".

irard
e A A LS

[8

RS

AL

P :‘.".".". LA

" 300" da® 0 ot lat? = S gt ol fatf Ga5 Sa® o' B0 Aat Qaf B2® Sa® B Gg®

Quantitfication & Naming

&(<C>, <T>) (4.20)
is a theory. For readability, (4.20) can be written as

<C> & <T>, (4.21)
with '&' associating to the right.

Definition 4.22. If is any term and <cl>,...,<cn> are any constants,
then

([<cl>,...,<cn>),) (4.23)
is a special form. Note that n=0 is allowed so that
([,) (4.24)

is a special form. For readability, (4.23) and (4.24) are written respectively
as:

[<el>,...,<en>] : (4.25)

0: (4.26)

52

B P e LRy’ Jla® il S gRe Rl e g Bl g B g,

~8
I

‘ Example: Polrot 53

. e e e A - mom
D
&

5. Programming Examples: Poirot

™
One of the immediate uses to which one can put theories is the handling 2
of varying points of view, for example as considered by Fain et al. in N
Section 3 of [ROSIE]. To quote that paper:
The "problem statement” in this domain is straightforward: =
given some set of facts and some set of participants, the p
detective, Poirot, must uncover the information necessary to .
deduce which participants might be guilty. Poirot uncovers e

information by mediating a dialogue between the user and each
participant. Poirot then uses the information gleaned from .
the interrogation to make his deductions. In other words, the
user asks the questions and Poirot makes the inferences.
Unfortunately, each potential suspect has his or her unique
viewpoint of and knowledge about the situation. Thus, in
terms of implementation, we need some way of simulating the
privacy of each participants’ memory and some mechanism |
or mechanisms for simulating the question/answer protocol ‘
of interrogation.

P

The mechanism we use here is that of theories: each participant is h
represented by a separate theory. Thus, for example, the theory
representing Poirot is named poirot and consists of the following clauses:

rich(mary).
involved(sara).
involved(john).

The theory which represents John is named john and consists of the
clauses

need(john,money).
married_to(john,mary). .
loved(john,mary).

while the theory representing Sara is similarly named sara and consists
of the clauses

TIFT YT . W& &

- .

Example: Poirot

The theory common contains

sister(sara,mary).
loves(sara,john).
did_not_love(john,mary).
loves(john,sara).

participants:

.......

man(john).
man(poirot).
woman(mary).
woman(sara).
found_dead(mary).
detective(poirot).

all individual :
person(individual)<—
man(individual).
all individual :
person(individual)<—
woman(individual).
all [individual, person] :
married(individual, person) <—
married_to(person, individual).
all [individual, person] :
married(individual, person)<—
married_to(individual, person).

all [individual, person] :

married(individual) <—
wife(person, individual).

all [individual, person] :

married(individual) <—
husband(person, individual).

all [individual, person] :

married(individual) <—
spouse(person, individual).

all [firstPerson, secondPerson] :

related(firstPerson, secondPerson) <—
married_to(firstPerson, secondPerson).

all [firstPerson, secondPerson] :

related(firstPerson, sccondPerson) <—

W W .

54

knowledge regarded as common to all

ey oy g tad b ey tag g Ued ik Jof 98" R RN a0 Wag Vop Vg VaR 8.8 tog) 020 628 Voa'h gt 0 fafia’ RS 2.8 4 DrET RN

; Example: Poirot 56§

. married_to(secondPerson, firstPerson).
] SN
: all [firstPerson, secondPerson] :
', related(firstPerson, secondPerson) <—
W sister(firstPerson, secondPerson).
.: all [firstPerson, secondPerson] :
-\.: related(firstPerson, secondPerson) <—
. daughter(firstPerson, secondPerson).
(Mary, being deceased, has no theory representing her interests.)
) Recall that Poirot listens in on the interrogation that we conduct with John
b, and Sara, and then makes his deductions from the evidence
y accumulated (i.e., the positive responses that John or Sara makes.)

Poirot thus requires a theory which represents his "theory of evidence™:
the rules whereby he can conclude that someone is a suspect and what
their possible motive might be. This is represented by the theory named
suspct:

all [person, otherPerson, victim] :

L suspect(person, jealousy) <—
loves(person, otherPerson) &
married(otherPerson, victim) &
found_dead(victim).

L

: all [person, victim] :

! suspect(person, greed) <—

. need(person, money) &

‘ found_dead(victim) &

- rich(victim) &

5 related(person, victim).

all [person, otherPerson, victim] :

> suspect(person, revenge) <—

. loved(otherPerson, victim) &
> not(otherPerson = person) &
' found_dead(victim) &

- rejected_by(per-on, otherPerson).
X all [person, otherPerson} .
rejected_by(person, otherPerson) «<—

5

. .

. - » , . g TN T U NI
. ».’:-. \I~’~'- v, ‘.-_ -V’-.fo_’-- \‘"--"-_ ._"'-‘f.'f\n".‘f, -’.' e, ,‘n . -‘.‘{_‘q BORS '..I‘ 4’_.«'_‘ S A e . >, RO .
_ b L » » L . . B - . .) - . B

»

Example: Polrot 56

loves(person, otherPerson) &
not(person = otherPerson) &
not(loves(OtherPerson, Person)).

The workhorse part of the program is contained in the theory
labelled detect. The entry to the entire program is the zero argument
predicate detectiveStory. The first step of this predicate is to assemble the
set (list) of suspects according to Poirot -- this is called Candidates. The
next step is to operate on Candidates using the predicate dolnterrogations,
producing a list called Suspects.

N
}
:
;
;
)
;
|
4

It is during the running of dolnterrogations that the user asks
questions of the candidates and Poirot "listens." The information Poirot
finds interesting is recorded in the list Suspects. Specifically, the
questions which each candidate answered positively are recorded and
associated with the candidate in the list Suspects. Next, Poirot reorganizes
the evidence using the predicate assembleEvidence. He then uses the
individually recorded evidence (Suspects) together with the reorganized
evidence (TotalEvidence) in conjunction with his theory "suspct’ to draw
conclusions about the individuals. He reports these conclusions to the
user via the predicate reportOn.

all [person, candidates, suspects, totalEvidence] :
detectiveStory <—
demo(poirot, setOf(person, involved(person), candidates)) &
doInterrogations(candidates, suspects) &
assembleEvidence(suspects, totalEvidence) &
reportOn(suspects, totalEvidence).
doInterrogations(([],[]).

all [person, rest_of_candidates, reasons,rest_of_suspects] :
doInterrogations([person | rest_of_candidates],
[suspect(person,reasons) | rest_of_Suspects]) <—
interrogate(person, reasons) &
doInterrogations(rest_of Candidates, rest_of Suspects).

The predicate dolnterrogations simply recurs down the list of
Candidates, interrogating each person and recording the Reasons for
which that person might be a suspect.

all [person, reasons] :
interrogate(person, reasons) <—

A e A e e e e e e e e e e e e e A T S
PR LIS P T R a T S W Y A X . . . - .

L4
'
L

o

d

o

-

MOy

e w'ss N R

NSO,

[N Y

Example: Poirot 57

conductInterrogation(person, [], reasons).

all [person, currentReasons, finalReason, instructions] :
conductInterrogation(person, currentReasons, finalReasons) <—
obtainFromUser(instructions) &
actOn(instructions, person, currentReasons, finalReasons).

The predicates conductInterrogations and interrogate are mutually
recursive. The positive answers to questions are accumulated in the
second argument of conductInterrogations. When the user's instruction is
to quit this particular interrogation, actOn causes the accumulated
answers to be returned by conductInterrogations in its third argument.
Note that the privacy of individual views is achieved in actOn by deducing
the user's Query from the theory "common" combined with the theory
defining the individual suspect (e.g., "john").

all command ;
obtainFromUser(command) <—
nl & write('>") & read(command).

all [person, currentReasons] :
actOn(done, person, currentReasons, currentReasons).

all [person, currentReasons, finalReasons] :
actOn(interrogate, Person, CurrentReasons, FinalReasons) <—
write('Interrogating ') & write(person) & nl &
conductInterrogation(person, currentReasons, finalReasons).

all [query, person, currentReasons, finalReasons, newReasons]:
actOn(query, person, currentReasons, finalReasons) <—
demo(common & person, query) &
respond('Yes, ', query) & nl &
addTo(CurrentReasons,Query,NewReasons) &
conductInterrogation(person, newReasons, finalReasons).

all [query, person, currentReasons, finalReasons] :
actOn(query, person, currentReasons, finalReasons) <—
respond('No, it is not the case that ', query) & nl &
conductInterrogation(person, currentReasons, finalReasons).

Example: Poirot

This completes the definition of dolnterrogations. The predicate
assembleEvidence simply forms a virtual union of the reasons associated
with each suspect:

assembleEvidence([], empty_theory).

all [person, reasons, rest_susp, other_ev] :
assembleEvidence([suspect(person,reasons) | rest_susp],
other_ev & reasons) <—
assembleEvidence(rest_susp, other_ev).

The final top-level predicate is reportOn, which handles both
carrying out Poirot's final deductions regarding the status of each
suspect together with reporting on the evidence and the deductions to the
user.

reportOn([],_).

all [person, reasons, rest_susp, totalEvidence] :
reportOn([suspect(person, reasons) | rest_susp], totalEvidence) <—
write('Evidence concerning ') &
write(person) & write(:") & nl &
exhibit(reasons) &
determineSuspectStatus(person, reasons, totalEvidence) &
reportOn(rest_susp, totalEvidence).

Poirot's attempts to deduce which persons are really suspects is
carried out in the predicate determineSuspectStatus by the call to demo.
Note that the theory under which the attempted deduction takes place
consists of the theory representing Poirot combined with his theory of
suspects, the common knowledge, and the TotalEvidence acquired
during the interrogations. The full three-argument version of demo is
used so as to obtain the actual proof which is then used in presenting the
conclusions to the user in discussSuspectStatus.

all [person, reasons, totalEvidence, motive, deduction] :
determineSuspectStatus(person, reasons, totalEvidence) <—
demo(suspct & common & poirot & totalEvidence,
suspect(person,motive),proofldeduction)) &
discussSuspectStatusiperson,motive,reasons,totallividence,
deduction).

58

YOS]

)

.
8

,"; “- '.. {- "‘. ’,

Example: Poirot 59
all person : determineSuspectStatus(person, _, _) <—
discussSuspectStatus(person, _, _, _, innocent).

The remaining predicates are concerned with reporting to the user.
We will omit their details. Below is a transcript of part of one run of the
program (User input is shown in boldface.)

>interrogate.

Interrogating john

>need(john,money).

Yes, john need money
>related(john,mary).

Yes, john related mary

>loved(john, mary).

Yes, john loved mary.

>loves(john, sara).

No, it is not the case that john loves sara.
>loves(sara, john).

No, it is not the case that sara loves john.
>done.

>interrogate.

Interrogating sara.

>need(sara,money).

No, 1t is not the case that sara need money
>related(sara,mary).

Yes, sara related mary

>loved(john, mary).

No, it is not the case that john loved sara.
>loves(john, sara).

Yes, john loves sara.

>loves(sara, john).

Yes, sara loves john.

>done.

Evidence concerning john:
john need money
john related mary
John loved mary

john is a suspect. Motive ireed,

Example: Polrot 60

:
E

Poirot concludes that john is a suspect with the motive of greed. Here's his
reasoning:

john related mary is established.
mary is rich is established.
mary 1s found_dead is established.
john need money is established.
john suspect greed because of the rule
john suspect greed holds if
john need money &
mary is found_dead &
mary is rich &
john related mary.

Evidence concerning sara:
sara related mary
john loves sara
sara loves john

sara is a suspect. Motive: jealousy.

Poirot concludes that sara is a suspect with the motive of jealousy. Here's
his reasoning:

mary is found_dead is established.
john married mary is established.
sara loves john is established.
sara suspect jealousy because of the rule
sara suspect jealousy holds if
sara loves john &
john married mary &
mary is found_dead.

Notice the two different points of view expressed by the different
answers john and sara give to the questions presented.

P]

Example: Bottom-Up Parsing

6. Bottom-Up Parsing

Our next programming example is an unusual construction of a
bottom-up parser using the ability to generate new grammars
(represented by theories) on the fly. The grammars are expressed with the
rules of Definite Clause Grammars (cf. Perecira and Warren [1980]). They
process a list of Prolog terms representing the tokens of the sentence to
be parsed. At all points in the algorithm, the processing is relative to a
current extended grammar XG. (The original grammar G is always
passed along for use in generating the next extended grammar.) The
essence of the algorithm is as follows:

1. If the sentence is the empty list and the rule
(sentence -->)
belongs to XG, terminate successfully.

2. If the sentence is non-empty and the rule
(sentence -->)
belongs to XG, backtrack.

3. Otherwise, let T be the left-most token, let R be the remainder of the
sentence list, and proceed as follows:

a) Select a "grammar fact” from G which will reduce the selected

token to a non-terminal grammar symbol and apply it to T, yielding
T1.

b Select a grammar rule from XG with a non-terminal symbol NT
as its head such that the first symbol in the body of the rule matches
T1; let RB be the remainder of the body of this rule.

¢) Use XG, NT, and the reduced rule

NT -->RB
to construct a new extended grammar XXG; replace XG by XXG and
goto step 1.

Step 3c¢) expands to the following algonthm:

i) Collect the set K of all reduced rules of the form
H--> B,

61

Sag g Wag bop t.p tat ‘b . .) 3 ¢ . Bag T4 ol t.0 t .0 Bop b0 & ol W oa A TR o g R o Tat Var af Sk SoR o

Example: Bottom-Up Parsing 6 2

where the rule
H--> NT,B
belongs to XG; note that B may be empty.

i) If K contains a rule
(H1 -->),

choose one such, and let XXG be the set of all rules of the form
H2 --> B2,

where the original grammar G contains the rule
H2 --> H1, B2.

iii) Otherwise, let XXG be K together with the rule
NT --> RB.

The code for implementing a simple version of this in metaProlog runs as
follows:

all (G, S]: parse(G, S) <— pp(G, G, S).
all [G, XG]: pp(G, XG, [) <— belongs((sentence -->), XG) & fail.

all [G, XG, T, R, T1, NT, RB, XXG] :
pp(G, XG, [T | R]) <—
belongs((T1 --> [T]), G) &
belongs((NT --> T1, RB), XG) &
reduce(G, XG, NT, RB, XXG) &
pp(G, XXG, R).

all [G, XG, NT, RB, XXG, H1]:
reduce(G, XG, NT, RB, XXG) <—
belongs((H1 --> NT), XG) &
filter(G, H1, XXQ).

all (G, XG, NT, RB, XXG, H1, G1]:
reduce(G, XG, NT, RB, XXG) <—
not(belongs((H1 --> NT), XG)) &
filter(XG, NT, G1) &
addTo(G1, (NT --> R, XXQ).

The predicate filter(T1, X, T2) is defined to hold if T1 is a theory and
T2 is the theory consisting of ull those rules of the form

A AP AT A R A I I AL I B P R P R N A P N I I R N SR r
N " v 'y - - v ot N RS RSP 9 - -

e G AT Ao o A .
U T I WPy W Wis By W DA VNI s

W e 88 8'8 8 a0 b Bl 8.0 et ol Bab R £at Aad 3N Adk ™R . b e a0 aat Rt e et ia- e gie oih gid AFR v ol ta ate st i Aia il VA RA RS

v
3 Example: Bottom-Up Parsing 6 3
3
L
:.
H->B
>
vy where
*I
:‘
" H-->X B
V J
j.' belongs to T1. Something like this filter, but more general, is a candidate
" for being a built-in for metaProlog, but more experimentation is necessary
" before a decision is made. [In general, there is considerable room for
discovery and specification of theory-manipulation predicates.] It is
o ossible to simulate filter(T1, X, T2) by using setOf to create the list of all
. P
' axioms of T1, and recusrsively process that list to build up T2 from the
::; empty theory.
s
>
»_:’,
._'I'.
f
::.
"
r
::
o
N
\l
:
~
S, . e T v o o e e T R e e e
8. :;..-A.-A. - "',;.?;?:i‘.'-. u-_.'?rf.c:;.. P .L;\.a«-#..m._(.u ‘IMA;A;A‘A;A.:L@- ;.‘t_gri.i_m-l-g-;_.r. .-.t_‘r_ e .r_\.r,j

Co-routining & Parallelism

7. Co-routining and Parallelism

As part of our program of providing powerful tools for Al
programming, we seek to offer the programmer control of stream-based
communication between concurrent processes, while still holding to our
program of preserving the essential clements of Prolog semantics. In the
logic programming context, this amounts to implementing some form of
and-parallelism. The most straight-forward sort of and-parallelism to
attack is simple producer - consumer computations. However, since the
implementation of producer - consumer relations in which the producer is
allowed to non-determinately reconsider the stream it has produced is
difficult to say the least, we restrict ourselves to determinate and-paralle!
situations. Other approaches to parallelism in Proiog (e.g., Parlog (Clark
and Gregory [1987?]) or Concurrent Prolog (Shapiro [1983])) achieve this
restriction by introducing committed choice. However, while preserving the
correctness of the computations, this approach loses Prolog's deductive
completeness. In contrast, we preserve both the correctness and
completeness by restricting ourselves to running in parallel only producer -
consumer computations in which the production of the stream is
determinate. (Note that the computation of the elements of the stream may
involve non-determinate aspects; it is simply at the point of adding a new
element to the stream that the producer must act determinately. Also,
consumption of the stream may be entirely non-determinate.) The essential
point appears to us that it is not really the processes which must be forced to
be determinate, but rather the communication between them. Thus our
approach is to force the producing process to determinately fill the
communication buffer; all else can be non-determinate.

We have identified two useful classes of producer - consumer
computations which mcet our requirement (and the possibility of others

certainly exists).

The first is the (lazy) production of sets via complete exploration of a

search tree (i.e., the lazyv form of Prolog's setof construct) and the
production of streams by J« terminate tail-recursive procedures. These are
indicated in metaProlog pro. i< by the constructs

. e

64

- PO A
o DU UT O SR W N Ry 3

[l X BV I O B

, %A S

La
-
'~

..................

VO T RN - VCOUCW OOV ia® 3% g~ bat Gt ta? e T R TFAN IR TR "R R TR IO T TR O TP R

Co-routining & Parallelism

all_solutions(Template, Goal, Stream)
and

streamOf(Goal, Stream).

We see these as entirely encapsulated independent computations: their
only method of communication with parent or sibling processes is via the
stream variable. Every element of the stream must be ground. If the
producing process would have otherwise produced a partially instantiated
term as a stream element, that term must be converted to a ground term by
use of the 'naming’ or 'indicating’ operator discussed above in conjunction
with quantification. The same restrictions clearly must apply to the Goal
argument of both stream_of and all_solutions. One method of
implementation is that of producer variables. The first invocation of Goal
binds the variable Stream to a buffer together with a description of Goal and
its environment. Subsequent attempts to access the variable stream by the
consumer causes Goal to be run through one cycle of its computation,
binding Stream to a cons cell whose first element is the item produced and
whose second element is a description of the rest of the buffer together with
the current state of the computation of Goal. It is important to recognize
that the producer variable does not act like normal Prolog variable. Indeed,
since any attempt to match a non-variable term against an element of the
stream causes the stream element to be instantiated to a ground term by the
producer, and since the producer is determinately committed to the binding
it produces, producer variables behave for all intents and purposes as
ground objects. Thus it is perfectly permissable for producer variables to
appear in the Goal arguments of other producer processes. This allows for
two-way communication between producers. Process synchronization is
achieved by requests for bindings passed from process to process. It is clear
that the two communicating processes must created simultaneously. The
construct

simultaneous(Processl, Process?2)
achieves this effect. It can be invoked with any number of arguments.
Because we see these processes as entirely sealed computations with

their own environments, it is possible, in appropriate hardware settings, to
run them truly in parallel, allowing the producing process to fill the butfer

AT

........

65

AR T L A A L R, . U R T RN

e’ et e S A P 50 A 4 A R Al Sl el Aal i se |

Co-routining & Parallelism 66

up to some pre-set limit or even run to completion when the stream is finite.
On sequential hardware, the implementation is simple co-routining of the
producer and consumer, with the additional overhead entirely localized in
the communication -- there is no slow down of the basic Prolog
computation. In particular, the computaiional children of the Goal of one of
these processes do not inherit the parallel mode: they run as normal Prolog
processes. It should be possible to mix parallel and co-routined execution
with no change to the program or its behavior. Finally, while we have
not attempted to do so, it seems evident that or-parallelism could be
introduced with a stream operator whose top level was expanded in an or-
parallel manner. One might even introduce committed-choice versions of
such an operator without disturbing the semantics of the rest of the system.

.) N L s e . R S
T T e e e T e ST e e o B R S PO P L S R S Yo S R L “.""‘;
I AP AP T T N T DI DI AP SO AP PP S P SO ShP I SR P i AR N R S 7 YT Sy T O NI S s U SN

Example: Inland Spills 67

8. Programming Examples: The Inland Spills Expert

Here we discuss an adaptation of a program to manage inland
chemical spills at the Oak Ridge National Laboratory. The problem is
discussed in detail in Hayes-Roth, et al.[1984]. Our metaProlog program
for this problem was strongly influenced by the Rosie SPILLS program
(Fain et al.[1982}), from which the following problem statement was
drawn:

The SPILLS program locates and identifies hazardous
chemical spills, given a database describing the location of the
spill, the location of chemical storage containers, and a
description of the drainage network. SPILLS evolved as an
1 answer to a problem posed at the expert Systems Workshop
in San Diego, August 1980 ...The problem involved the creation
of an on-line assistant to aid a crisis control team in the
location and containment of chemical spills at the Oak
Ridge National Laboratory. Two experts in the field plus a
preliminary report ... provided the necessary expertise.

The Oak Ridge Laboratory has approximately 200
buildings scattered over a 200-square-mile area, many storing
hazardous chemicals in containers ranging in size from
small 1-gallon bottles or cans to huge 5,000-gallon storage
tanks. The drainage network under the building collects all
spills and discharges them into White Oak Creek, a waterway
running along one side of the lab's complex. When chemical
discharges are noticed in the creek they must be traced back
to some source (a storage container in or near a laboratory
building) so the leak can be stopped and the spill contained.

The SPILLS program attempts to locate the source of the
spill by tracing the flow of spilled material through the
drainage basin back to the source. This search method
requires a human assistant who must go out in the field and
actually look into the drainage networks at various check
points (usually manholes) to sce if the spill material is there.
There are so many manholes (hundred<) that it is not
practical to check them all for traces of the spill. Instead, the
program uses the information at its disposal to decide which

...................
................

............

UL T R OO OO - A M R L Y WY Wy . o't a*a . '8 0'4.0"0 2" (TP . q % atg at

LA

! Example: Inland Spills 68
'*:

N

> R . .

-5 checkpoint would provide the maximum amount of
- information at any given time, and recommends that the
4

! assistant examine that checkpoint. After the program is told
% - . . -

o the result of that examination, it recalculates the new optimal
o) checkpoint, and the process continues until the source is

found.

..

”.
e Besides processing reports on the location of the spill
| ; material, the program processes reports describing the
ANy

2 characteristics of the spill material. It attempts to
o determine what the material is and how much of it has been
.- spilled. This information, in turn, helps reduce the number of
~ . .

. possible locations to be checked.

v

One of the many drainage basins at Oak Ridge is shown in Figure

N B.8.1 below.

<

!
L~

:{.'.

T

-\.'._

~

e

o

A

7

%

v

W
<

’.

>

-
N2
N2

<

">

o

R O A i o B g R T e A S A ity

Example: Intand Spills 69
m19
Bldg 3650 — /(Bldg 3675 (" _B'dg 3024 i \ ([Bogaoess ——)
474 S33e A
I s484 m18 [-I s37.
- 26 507 528 $36- '
7 L 2350
N\ Bidg3a
-)
1'\.._ ' ‘
Bidg3508 Bo53503 | TN - N\
s49%d | /}’/'
$50 4 J=d-m16
v
s55¥s56 BicjzC2
\
—— Bldg3525 ~
Bldg3517 Nrn24
™\ . J y
Bldg3504 :
3 ~ A
Bidg 3518 D
rs3 %0 0nn Bldg3505 2
9317 gi&d 3513 :
G AN J o N~—
“m1
White Oak Creek
Figure B.8.1. .
Part of One of the Drainage Basins at Oak Ridge National Laboratory. A
It is evident that the basin forms a tree with its root at the White Oak 3
Creek effluence and its tips consist of the various sources. The problem)
then is one of exploring this <carch tree starting at the root (where the
spill is first observed) and l:cating the offending tip (a leaky tank). The

difficulty in this exploration which involves a human assistant going
out and looking into the muanholes) is the large size of the tree. Thus the
program, just as a human, will attempt to apply knowledge to minimize

LS ¥ B “b‘ . v ‘ I-.I - - . N - L) - - - - -- - -

Example: Inland Spills

the portion of the tree which must be examined.

Conceptually, at the outset of the scarch all of the tips are possible
sources of the spill. As knowledge (of the nature of the material and of the
manholes at which it has been observed) is accumulated, various of the
tips are eliminated as possible sources. OQur metaProlog program,
named OakRidge, emulates this approach by maintaining a dynamic
theory representing the current state of its knowledge. At the outset, it
consists solely of a collection of assertions to the effect that each of the
sources in the basin is a possible source of the spill:

possibleSource(s(1)).
possibleSource(s(2))

possibleSource(s(70)).

As the search progresses and various sources are eliminated, the
appropriate possibleSource(s(N)) assertions are deleted, while assertions
regarding the nature and properties of the spill material are added
along with assertions about the manholes at which it has been observed.

The knowledge which the program possesses at the outset is broken
up into various static thcories which are utilized by the reasoning
processes. The knowledge of the topology of the network, the nature of
its nodes, and the nature of each of the sources is contained in a theory
called srcs:

isPond(pond(3513)).
outfall(woc(6)).
isBuilding(building(3023))

isBuilding(building(3550)).

all N : isDrain(drain(N)) <— between(0, N, 16).

all N : isManhole(m(N)) <— between(0, N, 47).

all N : isSource(s(N)) <— between(0, N, 71).

all N : near(s(N), pond(3513)) <— between(0, N, 8).
all N : in(building(3023), s(N)) <— between(43, N, 46)

all N : in(building(3504), s(N)) <— between(10, N, 17).
all N : in(building(3504), s(N)) <— between(67, N, 70)

70

LY
W .

.........

.....

P P

-r = A

LR At L APEL AN ASEL S aF S)

Example: Inland Spills 71

parent(woc(6), m(1)).
parent(m(1), m(2)).
parent(m(2), m(3)).
parent(mi(2), m(4)).

all N : parent(m(5), drain(N)) <— between(7, N, 10).

VT T

all [M, NJ]: parent(drain(N), s(M)) <— between(2, N, 5) & M is N+1.

contains(s(1), gallons(2000), (transformer, oil]).
contains(s(2), gallons(1000), [gasoline]).
contains(s(3), gallons(10), [acetic, acid]).

L g0 g S A

Other static theories contain knowledge about how to infer the
nature of the spill material from its properties, how to infer the next
manhole to examine, and how to eliminate possible sources. These will
be described below. The top level of the program appears as follows:

oakRidge <— investigate(null).

all [currentData, updatedData, d0, d1, d2, d3] :
investigate(currentData) <—

write('Report please:') & nl &
getReport(currentData,updatedData) &
workOnMaterialType(updatedData,d0) &
workOnMaterial(d0,d1) &
workOnMaterialVolume(d1,d2) &
workOnMaterialSource(d2,d3) & ! &
dispatch_investigate(d3).

all updatedData :
dispatch_investigate(updatedData) <—
finished(updatedData) & !.

all data : dispatch_investigate(data) <—
!'& investigate(data).

The predicate getReport is the "natural language” front-end which

«
)
o’

.
"
-: Example: Inland Spills 72
;' obtains information to the user. The details of its definition are included in
the appendix to this section. The vartable CurrentData 15 bound to a
'i theory which vepresents the current information regarding the =pill
: being investigated. This is extended by getReport with the information
f: obtained. The workOn predicates are concerned with
" inferring the general nature, specific identitiv, volume of, and source of,
\ the spill. They each take the current information as input, and add to
~ it any inferences they may make to produce their output. Finally,
. dizpatch__investigate determines whether or not the source has been

determined, and hence, whether or not the investigation should be (tail
recursively) continued.

g Consider the predicate workOnMaterialType. It is concerned with
X the problem of inferring the general nature of the spill material. It bases
its deductions on the current information regarding the spill material
> (the variable UpdatedData) and a small theory “typeOfdMaterial” which
encodes the “expertise” for inferring the types of spill matenals in this
setting. The definition of workOnMaterialType runs as follows:

-c’
b'e
.J
all [data, extendedData, x | :
workOnMaterialType(data, extendedData) <~
write('Trying to determine materal type... 1 & nl &
- demo(typeOfMatenal & Data,type of materalispillx)) &
. &
addToldata, type_of _matenal(spill,x), extendedData) &
. write(The type of the spill matenalis) &
< print(x) & nl & nl.
all data :
7?. workOnMaterialTvpe(data, data) <—
- write('Can’t determine the type of the spill matenal now...) &
- nl & nl.
The theory typeOfdMaterial contains the following axioms
= all n: type_of_materialispll, [oml]) <
v

appears(spill_solubility, [low]) &
approximates(ph of <pillin)) &Hen& n<«y

all n o type_of_materiall=pill Ihase}) « - -
- appears(spill_solubihty lapghp &
K approximates(ph of spill/n}1 & 8 < n.

T T T N R R PR
Rl (WP URP Y W T RS DA Tar Sy Yy i T U e |

»»

L4l

L o9 W

Example: Inland Spills 713

all n: type_of_material(spill [acid]) <—
appears(spill_solubility,[high]) &
approximates(ph_of_spill,[n]) & n < 6.

The predicate workOnMaterial attempts to infer the specific
composition of the spill. It bases its work on the current information at
the time of its invocation (the theory dO) together with the theory
"maternialType” contains the expertise for inferring the spill composition.
The definition of workOnMaterial runs as follows:

all [data, extendedData, x] :
workOnMaterial(data, extendedData) <—
write('Trying to determine material...") & nl &
demo(materialType & data, consists(spill,ofilx & ! &
addTo(data, consists(spill,of(x)), extendedData) &
write('The spill consists of ') & write(x) & nl & nl.

all data : workOnMatenal(data,data) <—
write('Can”t determine what the material is now...') & nl & nl.

The theory materialType contains the following axioms:
consists(spill,oftf[sulpheric,acid])) <— 1iss(sulphate_ion_test,[positive]).

consists(spill,of{[gasoline])) <—
type_of_material(spill,(0il]) & smells(spill,of{[gasoline])).

consists(spill,off[diesel,oil])) <—
type_of_material(spill,[0il]) & smells(spill,of{{diesel,o0il])).

consists(spill,ofl[acetic,acid])) <—
type_of _material(spill,[acid]) & smells(spill,ofi{vinegar])).

consists(spill,ofi[hydrochloric.acid])) <—
type_of material(spill [acid]) &
has(spill,[pungent,/ choking odor]).

While the content of the rules in these theories is not particularly
deep, nonetheless, they exhibit the necessary characteristic of expert

Y

e S

Example: Inland Spills 71

system rules: the clear expression of whatever expertise they embody.
The code for trying to determine the source of the spill runs as follows:

all {data, extendedData, xDatal, xData2]:
workOnMatenrialSource(data, extendedData) <—
write('Trying to determine source...) & nl &
updateDetected(data, xDatal) &
eliminatePossibleSources(xDatal, xData2) &
checkForSource(xData2, extendedData).

all data :
workOnMaterial(data,data) <—
write('Can’'t determine what the material is now...)

& nl & nl.

all [dataln, dataOut, prevHighNode, newHighNodel:
updateDetected(dataln, dataOut) <—
axiomOfldataln, highestNodeDetected(prevHighNode)) &
demo(dataln, detected(spill, at(newHighNode))) &
demo(srcs, above(newHighNode, prevHighNode)) & ! &
dropFrom(dataln, highestNodeDetected(prevHighNode), datal) &
addTo(datal, highestNodeDetected(newHighNode), dataOut).

all data:
updateDetected(data, data).

all [dataln, dataOut, conseq, fact,
possibleConditions, excludedSrcs, xData]:
eliminatePossibleSources(dataln, dataOut)<—

setOflconseq,

(axiomOfldataln, fact) &

demo(seekSrc, conseq, bottom_up(fact)),

possibleConditions) &
checkOut(srcs & dataln, possibleConditions, {], excludedSrcs) &
1evise(dataln, excludedSrcs, xData) &
checkForBypasstxData, dataOut).

all [theory, accumulated, final]:
checkOut(theory, (], accumulated, final)<—
final = accumulated,

Example: Infand Spilis

all [theory, restConds, accumulated, final}:
checkOut(theory, [true | restConds], accumulated, finalic -
checkOut(theory, restConds, accumulated, final.

all [theory, S, C, restConds, accumulated,
implications, newAccumulated, finall:
checkOut(theory, [true | restConds], accumulated, final)<—
setOflimpSre(S), demo(theory, (C & source(S))), implications’ &
append(accumulated, implications, newAccumulated) &
I checkOut(theory, restConds, newAccumulated, final).

L o

The theory seekSrc contains rules such as the following:

all [S, material, N, otherMateriall:
impossibleSource(S) <—
consists(spill, of{ material)) &
contains(S, gallons(N), otherMaterial) &
not(material = otherMatenal).

all [S, V, SomeMateriall:

impossibleSource(S)<—
volumeOf(spill, gallons(V)) &
contains(S, gallons(N), SomeMaterial) &

Example: Circuit Diagnosis 76

9. Fault Detection in Digital Circuits.

In this section we desceribe approaches to fault-detection in digital
cirults based on the ideas of Esght {], extended to a hicrarchical setting

similar to that of Geneserethl]
9.1. Circuit Description and Simulation

For the purposes of fault-finding, the devices must be desenbed n
<ome sort of predicate calcults formahism. The exact format s
unimportant. FFor the purposes of the simple example we consider, we
label the gates and lines (nodes) of a combinational circuit as indicated in
Figure B.9.1.

(Do 9

Figure B.9.1. A Simple Circuit.
The predicate
andGate(G, Inl, [n2, Out)

expresses that (G is an and-gate with nput lines Inl and In2, and
output line Out. Similarly for orGate. The topological desenption of the

circutt is contain in the theory cl:

SN R AT AP AP OO P AP AP SRy, ‘ﬂj

i DO

’ PN

CalhOuaOues

A AALS

SN

AL S N

N

Example: Clrcuit Diagnosis

andGate(gl, a, b, o).

andGate(g2, ¢, d, .

orGate(g3, e, f, h). (9.1
inputNodestia, b, ¢, d).

outputNodes([h].

The predicate mputNodes holds of the list of inputs to the circuit as
a whole, while the predicate outputNodes holds of the list of output nodes
for the entire circuit. The behaviors of the circuit components are
described 1in the theory tt (for truth tables):

all {Gate, Inl, In2, Out]:

andTable(Gate, In1, In2, Out) <—
not(exceptional(Gate)) &
standardAnd(Inl, In2, Out).

all [Gate, Inl, In2, Out] :

orTable(Gate, Inl, In2, Out) <— (9.2)
notlexceptionaliGate) &
standardOr(Inl, In2, Out).

standardAndchigh, high, high)

all In2 : standardAndtlow, In2, low 1.

all Inl : standardAndiInl, low, low),
all In2 : standardOrthigh, In2, high.
all Inl © standardOr¢Inl, high, higho

standardOrtlow, low, low:
user chorcetdelTab.
The <cigmticance of the predicates exceptional and user choice’
will be described later The copodogy and component bohaviors can be used
to predict the aroat oo ven the mputs as desontbedan the theory

T s

Al Tnputlast
predicttInputlast, 1

writer predict g

77

.i
A
W Example: Circuit Diagnosis 78
X all [InputList, Node, Rest_Output Nodes, State, Rest Output]
§ predicttInputLizt, [Node | Rest_Output_Nodes],
N [outtNode,Stated | Rest Output] < — U
b, statet Node, Inputhist, Stater &
. 4 : .
: predictrInputhiast, Rest_Output Nodes,
' Rest Output Nodes, Rest_ Output:,
. all [Node, Inputlast, NodeState, GateName, Inputhinel, Inputline2] .
g statet Node, Inputlist, NodeStater < —
’ andGate(GateName, Inputhinel, Inputline2, Node)r &
. statetInputlinel, Inputlist, [ine_1_State) &
9 state(Inputline2, Inputlast, Line_2_State) &
‘ andTable(GateName, Line_1 State, Line 2 State, NodeStater.
all [Nede, Inputlist, NodeState, GateName, Inputlinel, Inputline2] .
statetNode, InputList, NodeState) < —
:"f orGatetGateName, Inputlinel, Inputline2, Node) &
- statetInputlinel, Inputlist, Line_1_State) &
N statetInputline2, Inputlist, Line 2 _State) &
-] orTabletGateName, Line 1 State, Line_2 State, NodeStateo.
>
__: all [Node, NodeState, RestInput}:
3 statetNode, [intNode, NodeState) | Rest Input], NodeState -
N all [Node, Rest Input, NodeState) :
~
statetNode, [| Rest_Input], NodeState) <
\'_‘ statel Node, Rest_Input, NodeState).
. The predicate predict can be used to simulate the action ot circuits
) Thus, for example, to cimulate the action of the ample aromt desenbed
above when the mput hines a, b, ¢, and d are respectivelv set to hugh, low,
: low, and low, one would run the metaProlog goal
demorel & tt & Taws, 94
predicto i ahch o b low o anre low aned Tow 5 Ot
witeh would be <olved o Bhn the value Ot = [out hlow
.

PO P, VPR, P e a Py A PP PSP RPN P PPy PP PN DU, WP YRRy

Example: Circuit Diagnoas's

9.2, Fault Diagnosis

This use ot prodor ot
tatorestings, boot et very exeitin

aeed o metaProloe to aramee

Ionosts an dontal o croans
[

are diven a desenptien Dok

inpoet-output poar O80T b

O s fanlty ot s et b e

tothe approach s bt

coctirbaten ot Db e
ceopaar IO Thie o0
coroats By compans o i)
wril assume that the el
moreover, that the faoy Tob
Pernr o ~tuck either haon o
weakenod Inothe abeonos ot

P =t ot candidie e do sy

< dpproin

'

to mampulate and create theon s senoe ot the

s roachalae

s cdve toa siegle oot a sl

G~ appreach ottt

SRS SR RIE TR S N thi- W
R BT o
ot b e b e

e U ne o gt ot the bt

then b locatdd We

ared cbheervabhe and

dssumptions can be

B outpuat ot the alpomthm wall

ot Mulngple toddrsor

rovpethiess

L Oy U D U DU)

DR s Sy R I,) W Wy W W, W W v, LN N A & TR TR TR LR A N

Example: Circuit Diagnosis

5: Delete from HYP all Hi for which the goal
demotHi & laws, predict(Id, Od))
fils,

6: Goto step 2.

Steps 2 - 6 of this algorithm constitute a reasonably standard "test
and eliminate” loop which we will discuss later. The most interesting
part of the algorithm is its first step, that of generating the candidate
descriptions of the faulty circuit. (Note that the entire algorithm is a
classic "generate and test.”) What is needed is a heuristic to guide this
generation through the combinatorial nightmare of all possible circuit
descriptions. The key is provided by the mathematician's observation
that even failed attempts at proofs are often useful in guiding a search for a
correct proof (as strikingly illustrated by Kemp's false proof of the four-
color conjecture and the Appel-Haken correct proof.) First note that since
(If, OP 1s a faulty [-OQ pair for the correct circuit D, the goal

demotD) & laws, predici(If, Of) (2.6)

must fail. However, in the process of failing this goal, the metaProlog
<vstem svstematically explores the search tree for this goal. Each of the
branches of this tree is a failed proof of the goal.

What we propose to do is what a mathematician normally does not
permit himself, namely to ask the question: Can I modify the axioms of
the theory D to make this failed proof into a correct proof relative to the
modified theory? In our case, we will only allow modifications to D which
rethct ~ticking a pin of a gate at either high or low. Thus we will
corerate all those moditications of D which

b are obtamed by cticking one pin of one gate at high or low,

2 allaw the goal 9010 he successful.

.................

. . . e B T A T e UG .
aind PO PO A T TV R R T W R ST VR W TRV R TR TR W,

80

S0 A XY

L %XrYR 72

FEPIT

-

oL) LAY

-'1.

. e

Example: Circuit Diagnosis

Under our basic assumptions, this procedure will satisfy the
requirements of step 1 of the algorithm, and obviously substantially prunes
the search space of all possible variations on the circuit D. The filter
provided by steps 2-6 then zeros in on the best description(s) of the faulty
circuit.

9.3. Implementation in metaProlog

The full three-argument form of the demo predicate provides us
with the facilities to accomplish this task. While the call (*) above will
fail, the call

demo(D & laws, predict(If,0f), branch(B)) (9.7)

will succeed, binding B to an unsuccessful branch of the search tree.
Thus the call

streamOf(B, demo(D&laws, predict(If,0f), branch(B)), Branches) (9.8)

will cause Branches to be bound to the list of all (failed) branches of the
search tree. Having obtained this list, we then must sift through it to
extract those branches which can be converted to successful proofs by
changing the behavior of one pin on one gate.

To this end, it is would be convenient if all of the branches were
organized so that all attempts to access facts in the gate portion (tt) of the
circuit description D occurred last in the branch with no later
processing of predict calls or top .logy calls. For then, the last (failed) goal
on the branch will be a -sllection of gate-database (tt) calls, at least one of
which fails. Filtrring of the list Branches would then be easy, since we
would only select those branches for which all but one of the gate-database
(tt) calls in the final (failed) goal were in fact successful, and the
modification to the gate database to make this branch succssful is then
ohvious. That it is possible to so organize the generation of the search tree
follows from one of the fundamental theorems at the foundation of logic
prograrnming, namely Hill's theorem to the effect that the existence of
=uccessful computations is independent of the rule for the choice of the
next literal or call at each stage of exploration of the tree (cf. Lloyd[], p.).
Thus we will utilize a computation rule which delays choosing "gate"

15 (on tt) as long as possible: all calls on andGate and orGate (and
“vr gates) will be pushed to the end of the branch. This control of the
« of the next literal at each stage of processing is achieved by use of

falk ek Sal ot Sk Gal Sall S talotalls aUy tallh salie il starnll ple aly A

;
}
|
: Example: Circuit Diagnosis 82
[the "user_choice” control annotation in addition to the “branch(B)"
! annotation.
i
»
With these preliminaries, the top level of the diagnostic algorithm
would now appear as:
all [Topo, Gates, I, O, Branches, HYPS, FAULTS] :
diagnose(c(Topo, Gates), p(I, O), FAULTS) <—
streamOf{demo(Topo & Gates & laws, predict(I, O),
branch(B)+user_choice), Branches) &
make_hyps(Topo, Gates, I, O, Branches, HYPS) &
test_and_elim(HYPS, FAULTS).
As indicated in Section 3, the "user_choice" control annotation

causes the metaProlog interpreter, at each cycle of the basic deduction
mechanism, to seek an assertion of the form

"user_choice(UC)"

in the theory under which it is carrying out the deduction. Recall that the
theory tt above contains just such an assertion:

user_choice{delTab).
The interpreter expects delTab to define a predicate
choose(Goal, SubProblem, RemainingLiterals) .

The metaProlog interpreter tries to solve a call on this predicate relative to
) the theory delTab using the current main goal state in order to choose the
next SubProblem of that main goal- state for attempted resolution.
Recalling the basic forms of goal statements from Section 4, we see that
the following clauses will constitute an adequate definition of delTab:

all [B, Literal, Remainder] :
choose((true, B), Literal, Remainder) <—
- choose(B, Literal, Remainder).

all [A, B, Literal, RestB] :
choose((A, B), Literal, (RestB, A)) <—
table(A) & choose(B, Literal, RestB).

TP PR B L S e L PR =N e T : o - P L L WL Sl S S SR SICT L S e SRR Srt Tt S S e N R S
. f_‘.ﬂ_-‘ -I'__-'_ f_‘f,‘lx.r‘.r\i__. T T A P \J‘n: e T e PR A Sy S A T __ N
R il A | Dok B . eh * » B D B » ¥ » » ” » - » -

afa 2l - : Al Sl . 'y - oig o lia Vo lia et >
W W W W W . L4 o LRt 0 a0 de tAadV A AL N e WL W L (W NN Ty W\ - e VN, Ve

......

Example: Clrcuit Diagnosis 813

YWY YY)

_ all [Al, A2, B, Literal, RestA] :
- choose(((Al, A2), B), Literal, (RestA, B)) <—
choose((Al, A2), Literal, RestA).

=Y all (A, B, Operator] :

5 choose((A, B), A, B) <—

[~ functor(A, Operator, _) &
’ Operator \==","

all [A, B, Literal, Remaining, Operator] :
- choose((A, B), Literal, Remaining) <—

G functor(A, Operator, _) &
e Operator \==",' &
v choose(B, Literal, Remaining).
j all [A, Operator] :
‘._. choose(A, A, true) <—
- functor(A, Operator, _) &
Operator \==",".
.‘ table(andTable(_, _, _, _)).
- table(orTable(_, _, _, _)).
> The predicate make_hyps simply recurses down the Branches list
3 attempting to generate a candidate theory from the branch:
- make_hyps(_, _, _, _, [1, []).
j: all [Topo, Gates, I, O, Branch, Branches, Hyp, Hyps] :
w make_hyps(Topo, Gates, I, O, [Branch | Branches], [Hyp | Hyps]) <—
¢ gen(Topo, Gates, I, O, Branch, Hyp) &
¢ make_hyps(Topo, Gates, 1,0, Branches, Hyps).
._ all [Topo, Gates, I, O, Branches, HYPS] :
:',: make_hyps(Topo, Gates, I, O, [_ | Branches], HYPS) <—
N make_hyps(Topo, Gates, I, O, Branches, HYPS).

The work of attempting to generate a candidate circuit description is
carried out by the predicate "gen". For our purposes here, we will
assume that the branch() control annotation has been implemented by
what is in fact the convenient method of representing the branch as a

-

L

Example: Circuit Diagnosis
list in reverse order of generation, so that the last (failing) goal state is the
head of the branch. Thus all gen needs to do is to pluck the head of the
branch off, and determine whether or not it consists solely of "table” calls,
all but one of which are in fact solvable relative to the theory Gates. If this
is indeed the case, it will note the offending table call, say for gate G, and
then generate the required theory from Gates by adding the assertion
exceptional(G).
to Gates, together with an explicit truth table for G (in the form of a
collection of __Table(G,) assertions) which is as close as possible to
the standard table for gates of the type of G, but which allows the offending
call to be solved. Since the gate G is now defined as being exceptional in
Gates, the default standard rule for gates of the type of G will not succeed,
but the explicit (non-standard) truth table for G will be used.
all {Topo, Gates, Goal, Hyp_Gates, Offendor] :
gen(Topo, Gates, [Goal | _], Topo & Hyp_Gates) <—
single_f{Gates, Goal, Offendor) &
mk_candidate(Gates, Offendor, Hyp_Gates).
all [Gates, TableCall, Rest] :
single_f{Gates, [TableCall | Rest], TableCall) <—
not(demo(Gates, TableCall)) & all_work(Gates, Rest).
all [Gates, TableCall, Rest, Offendor] :
single_f{Gates, [TableCall | Rest], Offendor) <—
demo(Gates, TableCall) & single_f{Gates, Rest, Offendor).
all_work(_, (D).
all [Gates, TableCall, Rest] : all_work(Gates, [TableCall | Rest]) <—
demo(Gates, TableCall) & all_work(Gates, Rest).
all [Gates, G, Inl, In2, O, Hvp, Table] :
mk_candidate(Gates, andTablc(G, Inl, In2, O), Hyp) <—
mk_and_cand(Gates, ;. Inl, In2, O, Table) &
add_all(Gates, [exceptionalicGy | Table], Hyp).
_________________ ’ ."_»_ ~ e -':-'. -.',f'__ . _-‘;_..._ DA TR TR LR R - n, n,

84

rrvecrrc R YR I
@ nA s A S a kg

’d

Cate e e
AR
l.'. o .

« ‘l: ‘: l.""')

. Pl s
U Bk

o}

)
2,

. ."... :‘ «

).

LR
EN]
LSS

PP

(3

Example: Circuit Diagnosis

all {[Gates, G, Inl, In2, O, Hyp, Table] :

mk_candidate(Gates, orTable(G, Inl, In2, O), Hyp) <—
mk_or_cand(Gates, G, Inl, In2, O, Table) &
add_all(Gates, [exceptional(G) | Table], Hyp).

all [Gates, G, Inl, In2, O, Rules] :
mk_and_cand(Gates, G, Inl, In2, O, Rules) <—
Rules = [andTable(G, Inl, In2, O),
all [I1, 12, O0] :
andTable(G, I1, 12, O0) <—
(I1 \==Inl1;I2\==In2) &
standardAnd(11, 12, O0).']).

all [Gates, G, Inl1, In2, O, Rules] :
mk_or_cand(Gates, G, Inl, In2, O, Rules) <—
Rules = [orTable(G, In1, In2, O),
‘all [I1, 12, OO0]
orTable(G, 11, 12, O0) <—
(I1 \==Inl1;12\==In2) &
standardOr(I1, 12, 00)." D).

In the last two rules, the quoted expression appearing as second
element of the list in the body is just a shorthand for the present
purposes. This shorthand indicates the result of building a term
representing a rule using the appropriate naming operators. The last rule,
for example, would more likely appear:

all [Gates, G, Inl, In2, O, Rules] :

mk_or_cand(Gates, G, Inl, In2, O, Rules) <—
Rules = [orTable(G, Inl, In2, O), R_Others] &
mk_or_rule(G, Inl, In2, O, R_Others).

The predicate mk_or_rule would use the naming operators to
construct the indicated short-hand rule out of G, Inl, In2, and O. [The
obvious utility of the short-hand notation suggests a further extension of
metaProlog allowing such constructs. Care in constructing such an
extension must be exercised however, since a solution must be provided
for the problem of quantifying into quotational contexts and all the
referential opacity that would result.] Finally, add_all is defined as
follows:

85

.....

o Example: Circuit Diagnosis 86
N
. all TL :
. add_all(T1, {1, T1).
all [T1, A, As, Result, T2 :
"y add_all(T1, [A | As], Result) <—
) addTo(T1, A, T2) &
., add_all(T2, As, Result).
- 9.4. Coroutining
=
. The code for test_and_elim, while somewhat complex, is relatively
" straight-forward, and so will be omitted here. In this formulation of the
T diagnostic algorithm, the first
-
- streamOf{demof...
v,
v
z call, when run in a purely sequential version of metaProlog, produces a
b completed list of all branches of the search tree. This complete list is

recursively processed by make_hyps, producing a completed list HYPS of
candidates, and this is then recursively processed by test_and_elim. For
real-world circuits, these lists might be unthinkably large. Instead of
processing completed lists, it would be preferalle to generate them as
coroutined streams in a lazy manner, allowing consumption of
branches by make_hyps as they are generated by the streamOf call, and
N allowing consumption of candidate theories by test_and_elim as they are
generated by make_hyps.

N The concurrency facilities of metaProlog will allow just such an
d approach. They in fact allow the organization of test_and_elim as a
K dynamically growing stream of filters, much as classical concurrent
B implementations of the seive of Eratosthenes. In the more general
N setting where we abandon the “single stuck-at” fault assumption, a given

branch from the search tree may in fact produce more than one candidate
theory. In this setting, we can use the concurrency facilities to organize
make_hyp as a cascade of streams. This structure is indicated

: schematically in Figure B.9.2 below. In an implementation of metaProlog
. on a multiple-processor machine, the indicated processes could run
concurrently on separate processors.
2,
<
&
Ca
?
‘o
L d
»
L4
- - . ~ ~ LR
- N e e T T T T T T T T e e ST

e A adh o adt o oA, oA .

87

Example: Circui* Diagnosis
(tin,fout) - faulty 1’0 pair
demo(top&prop&tun, prp(tin,fout)) - fails

??, Branches) - succeeds

demo(top&prop&fun, prp(fin,fout),
failed branches of search space

Infer changes to
theory fun which
will make branch
: successful Candidate theories of faulty circuit
Generate distinguishing input
. for pairs of candidate theories
X
‘Candidate theories

Get Ox for
Ix from real
faulty circuit
insert in (Pass it predicts (11,01)
Check previously filter tower N
passed candidates =
* Pass if predicts (Ix,0x)
Accumulate
Passing Candidates
When process terminates:
of

Holds single candidate or collection
indistinguishable candidates

1/0
Figure B.9.2. Cascaded Generation & Testing of Candidate Theories

\ vl el A m 6 = e m e e a ey
B o e A A AP S e, “.(".r\.',‘a N A A

Example: Circuit Diagnosis
9.5. Hierarchical Diagnosis

One classic cognitive technique for managing complexity is the
impozition of hierarchical structure. Genesereth [] has observed that this
approach can be of considerable use in the diagnosis of circuit faults. Herve
we will sketch the extension of the algorithm desceribed above to a
hierarchical setting.

Viewed hierarchically, complex devices can be s<een as =imple black
boxes at one level, which, at the next lower level, decompose into collections
ot simpler devices. The connecting lines at the lower level may correspond
directly to connecting lines at the upper level, or may themselves
decompose into collections of simpler connecting lines. In the following
diagram, the lines at the upper level decompose inte collections of lines
at the lower level.

88

Example: Circuit Diagnosis 89

Device d1
- Adder at
‘ n1-——--«——> . n' ns
Iy e -—-~——’
n2 —- - -
-->
n3— —----> o T
N nt
n4 R
- AN O OO N N O O O N O O O O O O O O O O O O O O O OO ONONOONONONONONONONONONONONONONANONNNONONNNSNMNMNYN
. nit: njt nizr nj3 o
.- O 20 inj2 nia; ni4
I n|2‘ | l i i [
3 N l l Adder ai
v FIN N
N N\ N
MO N
nk1 nk3
v ! nk2 v , nk4

v \J

Figure B.9.53. Hierarchical Views of a Device.

While the diagram is =zimplified, at the upper level, the input lines
- might carry integers in the range 0,...256. These might correspond to
: collections of 8 lines at the lower level, each carrying a single bit. At each
level of abstraction, we must have available theories which describe the
topology of that level, the behaviors of individual components at that level,
and the laws of propagation at that level (though these latter may not
vary substantially from level to level). We will assume that devices are
represented by a compound term of the form

[k AN
RN

DeOuDelD
» oﬁl'l.).f‘.'

'

.....

Example: Circuit Diagnosis

JoUvpe, Topology, Behaviors, Laws Corresp

where Type is an atom o ndieating the kind ot device, and Coyre o0
cllection of rules indieatings the mappimg from the aopet and s ourpeat T
o the svven device - viewed as a black box at the npper becel o abstraon i

to the internal ines when the device as opened vpand vieswed at the rooa
lower lovel of abstraction The collection ot all <uch device deseription s s
a<=umed to be stored inoa named theory mamtaimed ot the cop Level ot
metal’rolog, named devs’ [The svstem provides a0 badt i prodieare
cataloguerName, Theoryvy which s user-extensible] Herers oo <keteh the

revized hierarchical duagnostician:

Al [Device, 1,0 Topo,Behavs Laws, Corresp, Branches HYPS Dev FLTS])
diagmoset Device, ptl,On <
catalogueldev, dtDevice, Topo, Behavs, Laws, Correspn &
streamOfT B, demotTopo& Behavs&Laws, predictt1,O,
branch(B)+user choice), Branches) 1 &
make hypstTopo, Behavs, [,O, Branches, HYPS) &
test _and_elim(Device, HYPS, Dev FLLTS) &
report_on(Device, Dev_FLTS) &
decomptDevice, Dev LTS, p1,00.

all [Device, Hyp_List, IO _pair] -

decomp(Device, Hyp _lLast, [O_pair) <—
primitive(Device) &
report_on(Device, Hyp_List).

all {Device, 10 _pairj :
decomp(Device, [], IO_pair) <—
not(primitive(Device)).

all [Device, Hyp, Rest_Hyps, 10_pair, Device_Info,SubDevice,
Sub_F_In, Sub_F_Out] :

decomp(Device, [Hyp | Rest_Hyps], [O_pair) <—
not(primitive(Device)) &
catalogue(dev, Device Info) &
ident_fault_comp(Device, Device_Info, [O_pair, SubDevice) &
map_inputs(Device,Device_Info,SubDevice,IO_pair,Sub_F_In) &
map_outs(Device, Device Info,SubDevice,IO_pair,Sub_F_Out) &
diagnose(SubDevice, p(Sub_F_In, Sub_F_Out)) &
decomp(Device, Rest_Hyps, 1O _pair).

.

10, Frames and Arravs

C e s A\Lsz»'r\\ , N (R (R TR v ‘:. I_‘. oo e {
cocreb tcchnpae s o et sl e o IR VAR T
N S U Y SN S YA P YT S AL & SRR SRR S FUNTEUEE FUNE S SYRRCI SO =
coteatatins, thae apge ar o bty m:.m.ai;w!r;» S S A T T

oy T bty s

N tr [N} 1 t
) R T B TEE S T S S B TR RO N S A S SNPE TR

g codval frooame e phiven O

svegpe D toether o stoaae s oatecsng that they o Feoae essod e o

b b thee trarme as a o das~ cbor by cannmese abont tocether
t . [

e~ides bemny o fdlable wath o rather ordinary entities atoms,
coambers, eomponnd expressionso cortaine <lots can be filled wath
poterences to other frames These references can be used to orgamze
AMections . of trames o varnous kinds of herarchies which can be
explarted by svstems which are utithzainge the collection,

Fopreallve o trame carmes an adentitier which speaties it uniquely
in o the collection Thus, o brame labelled elephant ught contain the

Following slots amony others:

a kind of © mammal
color - grey

number of toes - 4

Another frame, labelled “clyde” and intended to represent a particular
clephant, might contain the following slots among others:

a kind_of : elephant
home : london_zoo

The entry “elephant” in the frame for clyde might indeed be the
identifier "elephant”, or might be an internal direct reference to the frame
representing generic elephants. In the former case, a frame processing
system which was looking in clyde's frame and needed to obtain some
information from the elephant frame (which is generic information
generally true of all elephants; would first need to look up the identifier
"elephant” in some internal table giving it the location of the generic
elephant frame. Also, generic information is in such settings usually used

Froves &% Arrays

i~ detactt, and can be over-mdden by amtormation i the <p oot £

Vo '

Ve~ atebvde were an albino, the trame tor clvde could contian the 0y
ol whate

Shoaould be o acceso b when obvde s ool was neede d Wihen
drompting to o obtim antonmation fromoa o particelar st a ot e
Coanie, paoces<ing sv<tems tvpreally o detanlt o hocher frames o e
Aonen b o herarchy only when the given <ot o ot present oo thae

portenlar frame.

Froma logical pant ot view of (Haves]n the slots ot a trame andd
thoir contents can be viewed as assertions. Thus the frame
clephants could be taken to be vpavalent to the eollection

a kind offelephant, mammali
colorelephant, grevy

number of toestelephant, 4

while the frame for ithe abimos clvde conld be tahon as being cquavalent
to the collection

a kind oftelyde, eiephanty
hometclyde, london 7000

colori Cl_\'d(', wiiate)

But in metaProlog, the theory construct 1s designed specifically for
the representation and mampulition of collections of assertions.
Moreover, the collection of a-sertions making up a theory can indeed be
physically grouped together, or vize the actual arrangement is such that
the access effects are verv much as though the assertions were grouped
together. Thus 1t 1s obvicusly natural in metaProlog to represent frames
as (possibly small or larges theories containing assertions which
correspond to the <lots and their contents.

Given this point of view 1t remains to be seen how we may organize
the manipulation of these theories representing frames so as to achieve
the effects produced by tyvpncal frame manipulation systems. (We will do
this first from a straight-forward naive point of view; later we will refine
the approach to achieve mare compact storage utilization and the effects
of direct embedded pointers tvom o kind _of' slots to other frames)

.
> "
~
~.
ey
N
~
Y
.
.
'
-\
'\
,
i
. H . . ' ' AR .
. ,
! ¢ 1 ' B! ') e Coyt RS { S
S g Lol ' ~ vt AR O P S ot S
' . . . O SR . Lo .
[A . [N [RS8 > ! IR S AT SURN TN
\ 3
e ~1 ~ Tt ;"'| [RY - oo b o [iT}kt!l T!'.t‘ TR o !
.) \ \ -)
et e e he o e bl et S e oand Toivddle o n .h}xt Ve
) \
Pt oaraitia "17 'li‘?'\ too~ ~ladn t~
V' ! ’ ! ‘\ L] LY .
D=t U v il Vv pitateo s T SYS

New St entries e new assertionss can be o oentered an the
N avdnvidual ocllection by nse of the addTo bualdtan predicate. The question
aritses as to what trunspires when one wishes to modify (update) an
abveady existing ot vahie e this setting remove an existing assertion
and replace it by a new oneis As will be discussed in Section 14, the
implementation of theories 1s as a kind of ‘mutable array” which
<supports backtracking, vet provides all the speed of normal array access.

In <hort, 1in a call

o addTotTT, A, T2y,
» the mutable arrav representing the theory to which the vanable T1 is

bourd is actually updated by the insertion of A, this updated array is
bound to T2, a descriptor referencing this updated array and A is bound to
T1, and everything appropriate is trailed. The descriptor to which T1 is
bound describes the original value of T1 in terms of A and the updated
value currently bound to T2, See Section 14 for a more detailed discussion.

LA M AA o

For our purposes here, 1t suffices to say that the theory representing
the frame can be updated in such a way as to provide the same fast access

as the original frame and vet stll preserve the logical characater of the

Poaoes & Arrays

oL tatien.

‘U remans to be seen just how the remaining actions of frame
voocessorsoare effected in this context. This is most easily scen by
tiv boing the clauses which might be added to an ordinary [Prulog
ormtion of the metaProlog interpreter (i.e., the predicate demo).
Brietly, one needs to add something like the following clauses to the set of
Janses defining demo:

demot Theory, Goal) :-
Goal =.. [Predicate, Argl | RestArgs],
demo(Theory, is_frame(Argl, Frame_Theory)),
demo(Frame_Theory, Goal).

demo(Theory, Goal) :-
Goal =.. [Predicate, Argl | RestArgs],
demo(Theory, is_frame(Argl, Frame_Theory)),
demo(Frame_Theory, a_kind_of{Argl, B)),
H =.. [Predicate, B | RestArgs],
demo(Theory, is_frame(B, B_Frame_Theorv,
demo(B_Frame_Theory, H).

As indicated above, we will later revised this t. .
sterage and increase efficiency. But for now. let < -
work. Given the call

demo(animals, color(clvde, X'i
the first of the two clauses abiove Wil e
retrieved by the second call 1 vi
effect of binding Xt Wb

(!'*H]u) AT -

the oo
REATEE

91

AD-A185 574 LOGIC PROGRRHHING HND KNOHLEDGE HHINTENRNCE(U) SYRACUSE ~ 272
UN! NY SCHOOL OF COMPUTER_AND_INFORMATION SCIENCE
K A BOWEN 13 AUG 87 AFOSR-TR-87-1304 SﬂFOSR-ggaOiggs

UNCLASSIFIED

s

Ap b

.

$

.

Ve.8'p,1%) Alg A%

o.8%,

3

A LUAA AN AN

4,
.8

)

'o“.

'8.0'0,4%

Tttty

v
B

O Ay
‘\'"’.‘" ».‘:

$a" g By et
UM R)
AAGHONLS

T R
.!;,o

Sa g

* « - .

S e

WSS
A

!
i

A =l 2 v
E REE)

—.

i

14

ONAL BUREAU OF STANDARDS-1963-A

MICROCOPY RESOLUTION TEST CHART

10
;
122 1l

.. NAILK

e T T e it T) - P R e A I
- S e - . o e [x -~ ~1 : . -

o

N

e et m e e, e
TR S N L R ¢

Frames & Arrays

will be run, finally binding N to 4, in the accepted manner of inheritance.

As naively described above, the organization of collections of frames is
based on "master hash tables" containing pointers to the various frames.
Given a modern workstation processor of sufficient power, this might not be
a bad approach. However, the elements of the metaProlog approach provide
a more sophisticated organization. The cost of the naive approach is
encountered when following inheritance pointers such as "is_a_kind_of".
The tracing of these pointers would involve multiple probes in the master
hash table. However, these can be replaced by the tracing of pointer chains
as follows.

The notion of a metaProlog name is similar to the natural language
notion of name. It is a syntactic item which somehow directly refers to the
object it names. The details of an implementation method are irrelevant so
long as the name relation posseses the required abstract properties.
Consequently, we are free to implement the name relation and names any
way which provides the essential "referring” property of names. Since all
the items referred to by metaProlog names are themselves syntactic items,
the things named are ultimately just computer data structures which must
reside at locations in memory. Consequently, a prime candidate for the
implementation of names is the use of internal memory pointers referring
to the locations of the data structures. Most likely these references will be
more complex than raw pointers — for example, they might be tagged
pointers. But metaProlog names are just metaProlog entities, no different
in general character from other metaProlog entities, and consequently,
names can participate in assertions just like all other entities. Hence, the
inheritance assertions contained in a frame can refer to the super-ordinate
frame using such a name of the super-ordinate frame. But then, following
inheritance frames simply involves extracting the memory address from
the name, and following the resulting pointer, etc.

e A"

. R RO R) A e . .
S 1 A T S L S R N VN OO e

95

v - L. T T O T S e S T SO (L S AL T U N S W L S T
- . . R 5 \ \ RN A AT
5

-' .-\ -h

.

IR AR

.r"l'([€ v v

v

o |" l). £

Truth Maintenance & Concurrency 96

»

s
o 11. Truth Maintenance & Concurrency
¢
o 1.1 Related metaProlog Facilities.

"

. Part of the original motivation for the original design of metaProlog

* was the desire to provide a logically sounder basis for the use of logic
;" databases. Specifically, many Prolog programs utilize the program
) database itself to represent knowledge being manipulated by the program.
* This involves on-the-fly modification of the program database by the built-in
2 predicates assert and retract. This has at least three drawbacks:

Eﬁ 1. It is logically unsound. There is no known logical basis for performing
& deductions from a set of axioms which vary as the proof is being
4 constructed: classical logical is a-temporal.

; 2. There exists the possiblity of confusion between the program itself and
the knowledge base it manipulates since they occupy the same name space.
. 3. There is no possibility of dealing directly with distinct alternative
- knowledge bases, since everything must be recorded in the single program
: database.

) Sequential metaProlog solves these problems. While sequential
f, metaProlog is logically sound, some difficulties remain in the run-time
2 interpretation of some constructs. To deal with these difficulties, we
7 explored borrowing constructs from Concurrent Prolog. Besides solving the
: problems, the concurrency constructs permit a useful programming style
i for reasoning systems.
¥
- Ordinary Prolog systems provide for the representation of just one
y logical theory: the program in its entirety is identified with that theory. Yet
3 there are many circumstances in which one would find it extremely useful
\'.' to be able to represent different logical theories within the same program.
Y. This facility could be used, for example, in a medical diagnosis and
S, therapy program not only to increase modularity and efficiency by
] segregating information about different classes of diseases and drugs into
A different theories, but also to represent alternative diagnostic and
N therapeutic approaches and regiemes.

g metaProlog can be thought of as being obtained by starting with an

4 Truth Maintenance & Concurrency 97

ordinary Prolog system and extending it so that the following criteria are
b met:

“ 1) For every term and formula E of the system, there is a term of the
o system, say call it

_u n(E),

L«

o)

e which serves as a name of E. The connection between the two is

provided by a primitive predicate

:-C: name(E,n(E)).

; 2) For every finite set S of formulas of the system, there is a term t(S)
) which is thought of as the name of the theory whose axioms are the
A members of T. The connection between the members of S and t(S) is
* . . “ e .

2 provided by the primitive predicate

Ll

v

axiom_of(X,t(S))

Y

E which holds between X and t(S) iff X is the name of an element of S.

N

3 3) There is a primitive predicate

i demo(T, G, C)

Y

N

0 which holds iff T is the name of a theory, G is the name of a goal, and
™ C describes generalized control information to be obeyed in searching
2 for a proof of G from T.

>

” 4) There exist primitive predicates

) addTo(T, F, U) and dropFrom(T, F, U)

-

E such that if T and U are names of theories and F is the name of a
- formula, then:

" addTo(T, F, U) holds ifT U names the theory obtained from the

N theory named by T by means of adding the formula named by F

I as an axiom,

..

5

-.._' A SN X S Y R A AN DA S S AT N O A N R A AT N "a"# N DY AR D N M A A N I A IO I N N
) s » " A 0 . | oy p Wy Wy Wy W . .

'lt‘i'_.'u R AR TR AR EIANANANAE NN = 4 RN AN RN AR R AR RN PR L W o AR O TURT U TR T T o W ok ahd 2 b G &bl)

DA
W0
b
+8

", Truth Maintenance & Concurrency 98
N

:

o dropFrom(T, F, U) holds iff U names the theory obtained from

the theory named by T by means of removing the formula named
¥ by F from the axiom set of T (and doing nothing if it does not

, occur there.)
- Besides use of the predicate addTo described in 4), unions of two
theories such as T and S can be implicitly referenced via calls such as

k> demo(T & S, G, C, P).
!'

: 11.2. Simple Reason Maintenance

”,

N Consider a simple reason maintenance system designed to record the
¥ answers of suspects being questioned by our detective Poirot as described in
K? Section 5. Assume that reasons are maintained in a theory called TM,
3 and that evidence for an assertion is maintained by the predicate

J
N evidence_for(Assertion, Reasons)
: where Reasons is simply a list of the supporting evidence for Assertion.
[The assertions themselves are recorded in a theory called KB. Suspects,
\ . . . -

N being nothing more than the sum total of their beliefs, are represented by

the theory consisting of their beliefs. For example, john (in a recasting of

’ the original Rosie version) consists of:

ra

E needs(john,money).

o married_to(john,mary).

; loves(john,mary).

l‘

\

N (mary is the dead victim in this thriller.) The victim's sister sara consists
: of:

% sister(sara,mary).

- loves(sara,john).

false(loves(john,mary)).
loves(john,sara).

4

N (Note that sara believes that john loves her, while john's feelings differ
N somewhat.) Questions to suspects are generated by the user. Given a
& question Q, the system poses the question to a suspect, say john, by running
>

o

LA A AT '.r_:.r' ; Oy v.; . \‘ AR T TN e

-~ XX

i v A

PR O e - i i e

P Y

b

Truth Maintenance & Concurrency 99

the goal
?-demo(john, Q).

Depending on the success or failure of this goal, the system passes
either q_a(john,yes) or q_a(john,no) together with Q to the reason
maintenance predicate rm, which can be defined by the clauses:

all [KB,TM,Q,Who,KB,NewTM] :

rm(KB, TM, Q, q_a(Who,yes),KB, NewTM) <—
demo(KB, Q) &
addEvidence(TM, Q, q_a(Who,yes),NewTM).

all (KB,TM,Q,Who,KB,NewTM] :
rm(KB, TM, Q, q_a(Who, yes),NewKB, NewTM) <—
demo(KB, false(Q)) &
revise(KB, TM, false(Q) &
q_a(Who, yes) &
NewKB, NewTM).

all [KB,TM,Q,Who,KB,NewTM] :

rm(KB, TM, Q, q_a(Who, yes),NewKB, NewTM) <—
addTo(KB, Q, NewKB) &
addEvidence(TM, Q, q_a(Who, yes) &
NewTM).

Similar clauses must be added for combinations such as false(Q) with
q_a(Who, yes), Q with q_a(Who, no), etc. The predicate addEvidence is
defined by:

all [TM,Q,Reason,NewTM,New_evidence,Intermed_TM] :
addEvidence(TM, Q, Reason, NewTM) <—
demo(TM, evidence_for(Q, Evidence)) &
dropFrom(TM, evidence_for(Q,_)), Intermed_TM) &
insert(Reason, Evidence, New_Evidence) &
addTo(Intermed_TM, evidence_for(Q, New_Evidence),NewTM).

The relevant clause for revise is:

o o i N P S o P AP S A T e A N A Y S N T T ek N N N

“~a

BN

e]

AT AL

et N/ S e

s s 83 FS

Frsroe

ath At

‘g a'%.a®

Truth Maintenance & Concurrency

all [TM,Q,Reason,NewTM,NewKB,Pos_Ev,Neg_Ev,Concl] :
revise(KB, TM, false(Q),Reason, NewKB, NewTM) <—
demo(TM, evidence_for(Q, Pos_Ev)) &
demo(TM, evidence_for(false(Q),Neg_Ev)) &
insert(Q, Neg_Ev, Neg_Ev) &
demo(resolve, adjudicate(KB, false(Q),Pos_Ev, Neg_Ev, Concl)) &
finish_rev(KB, TM, false(Q), Concl, Pos_Ev, Neg_Ev, NewKB,
NewTM).

The predicate finish_rev is similar in spirit to addEvidence. More
interesting is the theory resolve which encodes rules for resolving
contradictions according to the evidence for an assertion and its negation.
Packaging this as a separate theory allows such a system to be easily
adjusted for varying applications. It even allows differing theories of
conflict resolution to be selected dynamically by the system according to
criteria depending on the structure of Q, or on criteria to be found in KB or
TM (and thus possibly varying in time).

In this case, resolve is simple:

all ([KB,TM,What,Ev_For,Ev_Against] :
adjudicate(KB,TM,What,Ev_For,Ev_Against,preserve) <—
member(q_a(Who,yes), Ev_For) &
demo(KB, reliable(Who)).

all [KB,TM,What,Ev_For,Ev_Against,SomeOne] :
adjudicate(KB,TM,What,Ev_For ,Ev_Against,reverse) <—
member(q_a(Who,yes),Ev_Against) &
demo(KB, reliable(Who)) &
not((member(q_a(SomeOne, yes),Ev_For) &
demo(KB, reliable(SomeOne))).

all (KB, TM,What,Ev_For,Ev_Against,LFor,LAg] :
adjudicate(KB,TM,What,Ev_For,Ev_Against,preserve) <—
length(Ev_For, LFor) &
length(Ev_Against, LAg) &
LAg =< LFor.

100

.......

.,

Truth Maintenance & Concurrency 101

all [KB,TM,What,Ev_For,Ev_Against,LFor,LAg] :
adjudicate(KB,TM,What,Ev_For,Ev_Against,reverse) <—
length(Ev_For, LFor) &
length(Ev_Against,LAg) &
LAg > LFor.

Here member is ordinary list membership, while length is ordinary
list length, and not is the common 'negation by failure' of logic
programming.

11.3. Adding Concurrency to metaProlog

One can conceive of starting with either metaProlog and adding
concurrency features, or conversely, beginning with a system such as
, Concurrent Prolog, and adding metaProlog features as system built-ins.
! We adopt the latter approach here. Thus, theories are regarded as first-
\ class objects, as earlier, and demo is treated as a built-in from the point of
view of Concurrent Prolog. However, unlike the other built-ins, it is
backtrackable, so that among other things, it provides an interface from the
Concurrent Prolog interpreter to a sequential interpreter. If a theory
argument is added to the Concurrent Prolog interpreter "solve" of Shapiro
[], then the interface back from the sequential world to the concurrent
world is provided by allowing calls of the form

demo(Theory, Goal, concurrent).

This causes Goal to be solved by a Concurrent Prolog interpreter which
carries Theory as its additional argument. In our current experimental
system, the user surface level is regarded as Concurrent Prolog running
against a user-supplied theory as its extra argument. The upper-level of
the detective program considered earlier now appears as follows:

all [Terminallnput,Poirot_KBM,Poirot_User,
KBM_User,TerminalOutput] :

detective <—
instream(Terminallnput) &
poirot(Terminallnput?, Poirot_KBM, Poirot_User, KBM_User?) &
kbm(Terminallnput?, Poirot_KBM?, KBM_User) &
merge(Poirot_User?, KBM_User?, TerminalOQutput) &
outstream(TerminalOutput?).

4
p i N -, " -t - - - - S I el g .-. - -« & - . - ~. “e - .n- - * .-‘ .-~ ‘- t “en .'. ‘-- T .I--‘
A N AT R AT N LA AT T T A N e T T T T TR e T T T
L] 8 . - - -« - ol A B

Truth Maintenance & Concurrency

Beyond the user, the major components of this program are the
knowledge base manager, kbm, which records the results of the
questioning together with maintenance of the reasons, and a detective,
poirot, who listens to the questioning and attempts to make deductions
regarding the suspects. The kbm is defined by:

all [TermIn,Poirot_KBM,KBM_User] :
kbm(TermlIn, Poirot KBM, KBM_User)<—
kbm(TermIn, Poirot_KBM, KBM_User,common &
integ(integ) & tm(tm)).

kbm([1, _, (],).

all [Query,TermIns,Poirot_KBMs,KBM_Users,KB] :
kbm([q(Query) | TermIns], Poirot_ KBMs,
[true(Query) | KBM_Users], KB) <—
demo(KB, Query) |
kbm(TermIns?, Poirot_KBMs, KBM_Users, KB).

all [Query,TermIns,Poirot_KBMs,KBM_Users,KB] :
kbm([q(Query) | TermIns], Poirot_KBM,
[false(Query) | KBM_Users], KB) <—
demo(KB, false(Query)) |
kbm(TermIns?, Poirot_KBMs, KBM_Users, KB).

all [Query,TermIns,Poirot_KBMs,KBM_Users,KB] :
kbm([q(Query) | TermIns], Poirot_KBM,
[unknown(Query) | KBM_Users], KB) <—
otherwise |
kbm(TermIns?, Poirot_ KBMs, KBM_Users, KB).

all [Query,TermIns,Poirot_KBMs,KBM_Users,KB,Who,
What NewKB,Maint_Resp] :
kbm([ask(Who,What) | TermIns],Poirot_KBMs,
[answertWho,What,Response) | KB_Users], KB) <—

question(Who, What, Response) &

reason_maint(KI, “What,

q_atWho Response?),NewKB, Maint_Resp) |

kbm(TermlIns?, Poirot KBMs, KB_Users, NewKB).

_ \.}'~\ ‘-

PR PR PP AL e P ORI I AR A@M-;@whh Con o _3.':'."

102

-

NN, e, g J

WY U O pd b Al taR el at ag et ol el Nl al iat Ml tat 48 gt el tat (a8 et Nat Ced ot CaD Sap et St et veb SaR et 4R af abo gl Salat o cal Al ol ol <Al el t

" Truth Maintenance & Concurrency 103
g

)

o all [Evid,TermIns,Poirot_KBMs,KBM_Users,KB,TM,What] :

" kbm([evidence(What) | TermlIns], Poirot_KBMs,

4:' [evidence(What, Evid) | KB_Users], KB) <—

b demo(KB,tm(TM)) &

= demo(TM?,evidence_for(What, Evid))

N i kbm(TermlIns?, Poirot_KBMs, KB_Users, KB).

X all [Command,TermIns,Poirot_KBMs,KBM_Users,KB] :
kbm([Command | TermlIns],Poirot_KBMs,
(funknown_cmd(Command) | KB_Users], KB) <—

/ otherwise |
K kbm(TermIns?, Poirot_KBMs, KB_Users, KB).
:. all [Who, What] :
. question(Who, What, yes) <—
‘« demo(Who & common, What)
| true.
N all [Who, What] :
N question(Who, What, no) <—
p otherwise
* | true.
.
N all [KB,What,Reason,NewKB,TM,InterKB,NewTM,MidKB] :
~ reason_maint(KB, What, Reason, NewKB) <—
N writelnl({'Init Reason Maint:; ', What, ' - ',Reason])
g | demo(KB, tm(TM)) &
: rm(KB, TM?, What, Reason, InterKB, NewTM) &
y dropFrom(InterKB?, tm(TM),MidKB) &
o addTo(MidKB?, tm(NewTM),NewKB).
N
0 It remains to sketch the definition of the detective poirot who listens to
5 the questions asked (by having access to the streams Terminallnput and
R KBM_User) and who attempts to make deductions based on the evidence.
. Since the kbm is intended to implement the corporate detective memory,
2 the simplest version of Poirot provides him with no local memory (i.e.,
- private theory) of his own, but forces him to rely on the kbm with which he
e interacts through the stream Poirot_KBM. (Additional clauses must be
) added to the definition of kbm to reflect the interaction; we will indicate
;
g

. . A s B P R P MMM a e, P, Ngy it et et AN g™ >, . e R W Y oy
N A o D S A A A O, (G TN L . LG, A B Y

....

Syt ek Mal tad ‘g% "

ORI WA TR Rt UL R U AR S U W UNURTLUN UW UV LU U LYV L \J 9.8 B%a 4% %2 272 4%2 8% 4242 M a d'a B\

Truth Maintenance & Concurrency 104

some of these as we proceed.)

poirot((}, [}, [},).

all [Who,What,RestQ,P_KBM,P_User,KBM_User,Q] : (
poirot([ask(Who, What) | RestQ], P_KBM, P_User, KBM_User) <—
perk_up(Who, What, P_KBM, P_User, KBM_User?) &
poirot(RestQ, P_KBM, P_User, KBM_User).

all [Who,What, P_KBM,P_User,KBM_User,
Message,Rest_KBM_User,Response] :
perk_up(Who, What, P_KBM, P_User, [Message | Rest_KBM_User])
<—
Message = answer(Who, What, Response) |
try_deduction(Who, What, Response, P_KBM, P_User).

all [Who,What, P_KBM,P_User,KBM_User,
Message,Rest_ KBM_User,Response] :
perk_up(Who, What, P_KBM, P_User, [Message | Rest_KBM_User])
<
otherwise |
perk_up(Who, What, P_KBM, P_User, Rest_KBM_User?).

all [Who,What,Response,KB,P_KBMs,PUser,Whom] :
try_deduction(Who, What, Response, [cur(KB) | P_KBMs], P_User)

<_—
demo(relevance, concerns(What, Who, Response, Whom)) |
try_suspect(KB, Whom, P_KBMs, P_User).
try_deduction(_. - __) <—

otherwise | true.

FW oW W P e Y c R " AT " n A" A" 2" " a e e ._-" 'J"..“J".' .._...- - --. e T T T e T T T T e e e .‘."_..'_"_'.'-.’-J' -.~-'
M G N N R e A R L RN SO s g '

oSN S P AH

cocy

E Y

s

T

0.8 e ol %20,"a0 2 A a0 A% 4 44 v, 9o g% ag vap ¥ ‘tad ¥20'0ad had'@ 080" WY Y S rYO
; b b Y

Truth Maintenance & Concurrency 105

all [KB,Who,Motive,Proof,P_KBMS,P_Users] :
try_suspect(KB, Who,
[record(suspect(Who, Motive),Proof) | P_KBMs],
[poirot(suspect(Who, Motive)) | P_Users])
<..—
demo(suspect & KB, suspect(Who, Motive),prolog, Proof) | true.

try_suspect(_, _, _, _) <—
otherwise | true.

The additional necessary clauses for kbm are:

all [TermIn,KB,Poirot_KBMs,KBM_User,KB] :
kbm(TermlIn, [cur(KB) | Poirot_KBMs], KBM_User, KB) <—
kbm(TermlIn, Poirot_KBMs?, KBM_User, KB).

all [TermIn,KB,Poirot_KBMs,KBM_User, KB,
Assertion,Reason,Asserions,Reasons] :
kbm(TermlIn,
[record(Assertion,Reason) | Poirot_KBMS], KBM_User, KB)
<
reason_maint(KB, Assertion, Reasons, NewKB) &
kbm(TermIn, Poirot_KBMS?, KBM_User, NewKB?).

Note that since theories are first-class objects, poirot uses the paritally
instantitated message cur(X) on the stream Poirot_KBM to request the
entire current state of the knowledge base from the kbm, and use it in his
deductions.

The theory relevance contains rules for concluding when a given
question and response leads to a concern regarding a possible suspect
(Whom), while suspect is Poirot's theory of what makes a person a suspect
with what motive. It appears as follows:

all [Person,OtherPerson,Victim] :
suspect(Person, jealousy) <—
loves(Person, OtherPerson) &
married(OtherPerson, Victim) &
found_dead(Victim).

e Truth Maintenance & Concurrency 106

i all [Person,Victim] :
suspect(Person, greed) <—

h need(Person, money) &

:' found_dead(Victim) &

! rich(Victim) &

. related(Person, Victim).

all [Person,OtherPerson,Victim] :

- suspect(Person, revenge) <—

loved(OtherPerson, Victim) &
not(OtherPerson = Person) &

: found_dead(Victim) &

2 rejected_by(Person, OtherPerson).

all [Person,OtherPerson] :

: rejected_by(Person, OtherPerson) <—

ot loves(Person, OtherPerson) &

v not(Person = OtherPerson) &

N not(loves(OtherPerson, Person)).

%

Cat

&,

o,

o

b

<

LS

14

.-I

:

o

4

2

~ W . w A R

Xt S PN A A e A A ”, L . NS
e e e R AR Nt eernd

AP S

»
1

)
L

o

)

A3

[N _c’ o %, AY V'.

~

&

,’ .
.‘a"'l

FA X

Iy

e

LN gt ate i uat AT WAV 68V B4 aiat vat Hac vavala¥ Nt ua' 0 fa- dav TV IUY

metaProlog/Concurrent Simulator

Appendix to Section 11:
The Combined metaProlog/Concurrent Simulator.

:-op(1199,xfy," 1).
-op(450, xf, '?).
:-op(950, xfy, '&').

c - op(1199,xfy,'|"),
op(450,xf,'?").

watch :-
retract(value(trace,off)).

nowatch :-
assert(value(trace,ofY)).

setup :-
set(smode,depth_first),
set(traceset,[calldemo(_),sucdemo(),
demodemo(_),reduction(_),suspension(_)]),
set(countingset,[]),
set(smode(read(_)),breadth_first),
set(initialized,true).

tre(Form) :-
clause(value(traceset,Current),true,PTR),
erase(PTR),
assert(value(traceset,[Form | Current])).
tr(Pred/Arity) :-

source_clause(Pred,Arity,_),
functor(Form,Pred,Arity),
trc(call(Form)),
tre(reduction(Form)).

solve(Goal) :-
clear_counters,
solve(Goal, 0),
display_counters.

solve(true, _) :-
f

solve(otherwise,) :-!.

solve([otherwise | Rest], Depth) -
solve(Rest, Depth).

solve(Goal, Depth) :-
con_system(Goal),!,
trace(system(Depth), Goal), Goal;
trace(solve(Depth),Goal),

J o' a4 2" 0"k o'l

107

LR PRI A A
-)"\4(w \f\\"\f*

metaProlog/Concurrent Simulator 108

schedule(Goal, X, X, Head, [cycle(1) | Taill),
solve(Head, Tail, nodeadlock, Depth),
trace(solved(Depth),

Goal).

solve({otherwise | Head], Tail, DL, D) :-!,
solve(Head, Tail, DL, D).

solve([cycle(N)], _, _, D) -,
(D=0, write(['"***cycles: ,N1), nl; true).

solve([cycle(N) | Head], [], deadlock, D) :-!,
D=0, write(("***cycles: ',NI),nl,
writelnl(['***Deadlock detected. Locked processes:’ | Head]); fail.

solve([cycle(N) | Head], {cycle(N1) | Taill, nodeadlock, D) :-
NlisN+1,
solve(Head, Tail, deadlock, D).

solve([read(X) | Head), Tail, DL, D) :-
solve_wait_writes(Head, Tail, DL, D,
NewHead, NewTail, NewDL, NewD),

read(X),
solve(NewHead, NewTail, nodeadlock, NewD).

solve([(A & B) | Head], Tail, DL, D) -,
D1 is D+1,
solve(A, D1),
solve(B, D1), !,
solve(Head, Tail, DL, D).

solve([A | Head], Tail, DL, D) :-
con_system(A),!,
trace(system(D) A),
A
solve(Head, Tail, nodeadlock, D).

solve({demo(T,A) | Head], Tail, DL, D) :-!,
solve([demo(T,A,prolog,(],) | Head), Tail, DL, D),

solve([demo(T,(A,B),prolog,InPrf,0utPrf) | Head], Tail, DL, D) :-
D1is D+1,
trace(calldemo(D1),T/A),
(built_in_meta(A), A, !,Reas=bi(A) ;

retrieve(T,A),

Reas=s(A,fact)),
trace(sucdemo(D1), T/(A/true)),
schedule(demo(T, B, prolog, [Reas | InPrf], OutPrf),

Head, Tail, NewHead, NewTail),

solve(NewHead, NewTail, nodeadlock,D1).

solve([demo(T, (A,B),prolog, InPrf, OutPrf) | Head), Tail, DL, D) :-
D1 is D+1,
trace(calldemo(D1), T/A),

retrieve(T, (A <— Body)),

..............

I T T T T e i N R L G N N
......
PN - ~ Wt T T T T At e

- ",

::: metaProlog/Concurrent Simulator 109
"
;:g trace(sucdemo(D1), T/(A <—Body)),
schedule(demo(T, (Body, B),prolog, (s(A,(A<—Body))! InPrfl], QutPrf),
I Head, Tail, NewHead, NewTail),
o solve(NewHead, NewTail, nodeadlock,D1).
N
Y, solve({demo(T1, demo(T2, A), C, InPrf, OutPrf) | Head), Tail, DL, D) :-
) D1 is D+1,
trace(demodemo(D1),T1/(T2/A)),
X} schedule(demo(T2, A, C, [}, SubPrf),
3 Head, Tail, NewHead, NewTail),
o> solve(NewHead, NewTail, nodeadlock, D1).
¥
Y
L solve([demo(T, A, C, InPrf, OutPrf) | Head], Tail, DL, D) :-
D1is D+1,
N trace(calldemo(D1),T/A),
~ (built_in_meta(A),!,A,Reas=bi(A),Flag=ok ;
v con_retrieve(T, A, Flag),

K- Reas = s(A,fact)),

: (Flag=ok,!,trace(sucdemo(D1),T/A),
solve(Head, Tail, nodeadlock, D1),

- OutPrf=[Reas | InPrf];

N Flag=susp,
» schedule(suspended(demo(T,A,C,InPrf,0utPrf)), Head, Tail, NH,NT),
4 solve(NH, NT, DL, D1)).
-~ solve([demo(T, A, C, InPrf, OutPrf) | Head], Tail, DL, D) :-

-~ D1is D+1,

’ trace(calldemo(D1),A),

- con_retrieve(T, (A <— B),Flag),

. (Flag=o0k,!,
[~ trace(sucdemo(D1),T/(A <—B)),

schedule(demo(T, B, C, [s(A, (A <—B)) | InPrf], OutPrf),

[Head, Tail, NewHead, NewTail);

’ Flag=susp,
v schedule(suspended(demo(T,A,C,InPrf,Qutprf)),

~ Head,Tail NewHead, NewTail)),
:"‘_i solve(NewHead, NewTail, nodeadlock, D1).
3 solve([demo(_,_,_,_,_) | Head],Tail,D1,D) :-! (fail.
LW solve({A | Head], Tail, DL, D) :-

.:'{ D1 is D+1,

" trace(call(D1),A),

reduce(A, B, DL, DL1, D1),

S trace(reduction(D1),(A<—B)),
y.. schedule(B, Head, Tail, NewHead, NewTail),!,

:: solve(NewHead, NewTail, DL1, D).

N solve_wait_writes(Head, Tail, DL, D, Head, Tail, DL, D) :-

Head == Tail.

),

>

\l

.
LN

Mo

O AT o . " Y ;'."-".-"':‘4-".-,‘.-:'.-:'.»")'.‘ IR e et e e e T e L T A T T

LS

YR Y

s

}')f.'f A

)

B . ORONYY

S

S W AT F SARUIRIN

@
]
)

R TR A A RN AN AN KN A AN AN KA AR Ay ol Vo0 g Rod i ap tg ok aak 2 Vap b

metaProlog/Concurrent Simulator

solve_wait_writes([wait_write(X,Y) | Head), Tail, DL, D,
NewHead, NewTail, NewDL, NewD) :-
not(var(X)),!,
call(write(Y)),
nl,
solve_wait_writes(Head, Tail, DL, D,
NewHead, NewTail, NewDL, NewD).

solve_wait_writes([Process | Head], Tail, DL, D,

(Process | NewHead), NewTail, NewDL, NewD) :-

solve_wait_writes(Head, Tail, DL, D,
NewHead, NewTail, NewDL, NewD).

reduce(demo(_,_),_,_,_,_) :-! fail.

reduce(A, B, _, nodeadlock, D) :-
guarded_clause(A, G, B, D),
trace(try_clause(D),(A<—(G | B))),
solve(G, D),
'

reduce(A, suspended(A), DL, DL, D) :-
trace(suspension(D),A).

reduce(demo(T,true,_,InPrf,InPrf),true,_,nodeadlock,D).

reduce(A, B) :-
guarded_clause(A,G,B,1),
solve(G,1).

reduce(A, suspended(A)) :-
trace(suspension(A)).

schedule(true, Head, Tail, Head, Tail) :-!.
schedule(suspended(A),Head, [A | Tail], Head, Tail) :-!.

schedule((A,B),Head, Tail, NewHead, NewTail) :-
value(smode, breadth_first),
!
schedule(A, Head, Tail, Headl, Taill),

schedule(B, Headl, Taill, NewHead, NewTail),
1

schedule((A,B),Head, Tail, NewHead, NewTail) :-
value(smode, depth_first),
1
schedule(B, Head, Tail, Headl, Taill),
schedule(A, Headl, Taill, NewHead, NewTail),
!

schedule(A, Head, Tail, [A | Head), Tail) :-
value(smode(A),
depth_first),

SOOI

AR

- . m e
ST IT N AT Y,
Wy Ol

AT N S I L A I " Pl PENL O R T P
' (_'-J',J', J' 20 - " > - .r) .f...\ 0

e v .

TR

'\"'\-'.

N,

\'*\J,\'r'

OO

!, X=Y.
A
:‘f\'-’;{.
(DRI
N en o np- A mm s s b p - p o A e e
Ly e =, *\f o f._f 'l‘ ~J. o VN ~f\f\-f -\J‘ .‘- \-'\. O _'..‘.-’_.. .
., B R YD, K i Bl N N, “ N v

metaProlog/Concurrent Simulator

.

schedule(A, Head, [A | Taill, Head, Tail) :-

value(smode(A),
breadth_first),
]

schedule(A, Head, Tail, [A | Head], Tail) :-

value(smode, depth_first),
1.

schedule(A, Head, [A | Taill, Head, Tail) :-

value(smode, breadth_first),
.

guarded_clause(A, G, B, D) :-
ready_clause(A, B1, D),
find_guard(B1, G, B).

find_guard((A | B),A, B) :-!.
find_guard(A, true, A).

ready_clause(A, B, D) :-
functor(A, F, N),
functor(Al, F, N),
clause(Al, B),
race(concurrent_unify(D),(A, Al)),
concurrent_unify(A, Al).

concurrent_unify(X,Y) :-
(var(X) ; var(Y)), 1, X = Y.

concurrent_unify(X?, Y) :-!,
nonvar(X),
concurrent_unify(X, Y),
1

concurrent_unify(X, Y?) :-!,
nonvar(Y),
concurrent_unify(X, Y),
1

concurrent_unify(IX | Xs], [Y | YsD :-!,
concurrent_unify(X, Y),
concurrent_unify(Xs, Ys),
1

concu;rent_unify([]. m:-L

concurrent_unify(X, Y) :-
X =.[F | Xs),
Y=.[F I Ys),
concurrent_unify(Xs, Ys),
1
concurrent_unify(X,Y,ok) :-
(var(X); var(Y)),

o

ARG

DASANIILY

0 o -
'''''''''

111

‘e mmaw o aa

Pyl
watu G faia’s

LN

Cafa ol o)

o

wers

metaProlog/Concurrent Simulator

concurrent_unify(X?, Y, susp) :-

var(X),
nonvar(Y),

1

concurrent_unify(X?, Y, Flag) :-!,
nonvar(X),
concurrent_unify(X, Y, Flag),
'

concurrent_unify(X, Y?, susp) :-
nonvar(X),
var(Y),
1

concurrent_unify(X, Y?, Flag) :-!,
nonvar(Y),
concurrent_unify(X, Y, Flag),
]

concurrent_unify((X | Xs), [Y | Ys], Flag) :-!,
concurrent_unify(X, Y, F1),
{Fl=susp,!, Flag=susp;

nonvar(F1),
Fl=ok,concurrent_unify(Xs, Ys, F2),
(F2=susp,!, Flag=susp;
nonvar(F2),

F2=0k,!,Flag=ok)),
.

concurrent_unify({], [}, ok) :-\.

concurrent_unify(X, Y, Flag) :-
X =_[F | Xs],
Y=.[FIYs),

concurrent_unify(Xs, Ys, Flag),
1

trace(_, O :-

value(trace, off),
3

trace(A, B) :-
add_counter(A),
% break(A, B),
value(traceset, S),
(member(A,S); S = all),
writel((A, ', B)),
nl, .

trace(_, _).

% add a break package

clear_counters :-
value(counter(X),Y),
Y>0,
set(counter(X),0), fail; true

add_counter(A) :-
value(countingset, S),

- -, TR T3S\ "c \ SATRIT) ‘, NN J‘\..'\'} '_s..\ ',\'...\ '.',’-‘.‘-;..‘J,\

S

ol

-

o)y

R

[l b Al b Y

l'|'¢'y./’,

4
4
4
4
’

metaProlog/Concurrent Simulator

member(A, S),
addl(counter(A), _); true.

display_counters :-

value(countingset, S),
member(X, 8),
value(counter(X),Y),
Y>0,
writel{('# "X, YD),
nl fail;

sum_counters;

true.

sum_counters :-
value(countingset, S),
setof(Y, XA(member(X, S),value(counter(X),Y)),1),
sum(S1, 0, Total),
writel(['Total: ', Totall), nl.

sum([],Temp,Temp).

sum([H | T),Temp,Total) :-
NT is H+Temp,
sum(T,NT,Total).

strip_qs(X,X) :-

var(X),
'

strip_qs(X?,Y) :-
!, strip_qs(X,Y).

strip_qs((1,(0) :-
IR

strip_gs({H | T],[SH | STD :-
1

;trip_qs(H,SH),
strip_qs(T,ST).

strip_qs(In,Out) :-
In =..[F | Args])!,
strip_qs(Args, Stripped_Args),
Out =..[F 1Stripped_Args].

strip_qs(X,X).

set(A,B) :-
(clause(value(A,V),true, PTR),
!erase(PTR);
true),
assert(value(A,B)).
wait(X) :-
wait(X,).
wait(X, _) :-
var(X),

St et ougs Bt Ua Pe NaC 0Rc) Do gih Ba o0 Ay o f

......................

(PR AT e ‘Al 4t sl at el el el al o at.aloata ah. BV, 2. AVa A ad'a Y Y - vy O VOO O PO 8 id ot

metaProlog/Concurrent Simulator 114

! fail.

wait(X?, Y) :-
!, wait(X, Y).

\ wait(X, X).
)
)
t d‘f(xy Y) -
(var(X); var(Y)),
) ! fail.
! difiXx?, Y) :-
i [dift, Y).
b
{ difilX, Y?) :-
! 1, diftX, Y.
diftll, () -
! fail.

dififX | Xs], [Y | Ys]) :-
'

;i'iﬂX.)
difiXs, Ys).

difiX, Y) :-
X =.[Fx | Xs],
Y=.[Fy I Ys],
(Fx \==Fy;
difiXs, Ys)).

dlf(x' Y) -
(var(X); var(Y)),
fail.

con_system(wait(_, _)).
con_system(wait(_)).
con_system(dif(_,_)).
con_system(fread(_)).
con_system(otherwise).
on_system(writel()).

%deal with the meta built-ins

con_system(addTo(_,_,)).
con_system(dropFrom(_,_,_)).
con_system{consult(_,_)).
con_system{ask(_,_)).
con_system(Otherwise) :-
systeml(Otherwise).

all Xs :
instream(Xs) <—
read(X) | instream(X, Xs).

met.®rolog/Concurrent Simujator

instream(end_of_file, [(]).
instream(close_stream, []).

all (Xs,Ys,Y] :

instream([], Xs) <—
instream(Y?, Xs),
read(Y).

all [X,Xs,Ys] :
instream([X | Xs], (X | Ys]) <—
instream(Xs, Ys).

all (X,Xs,Y] :

instream(X, [X | Xs]) <—
wait(X) |
instream(Y?, Xs),
read(Y).

all (X, Xs] :

outstream(X | Xs]) <— %Xs is the current output stream

writel(['*** outstream: ', X]), nl |
outstream(Xs?).
outstream((]).

all [X,Y] :

wait_write(X,Y) <— % wait for X and output Y to current output stream

wait(X) | call((write(Y),nl)).
% wrap stream elements with an identifying tag

wrap([], _, (]).

all [X,Xs,WrappedX,Ys, W] :

wrap([X | Xs], W, [WrappedX | Ys]) <—
WrappedX =..[W, X] | wrap(Xs?, W, Ys).

all (X,X1,Y,Y1]:
It(X,Y) <—
wait(X, X1),
wait(Y, Y1) | X1 < Y1.

all (X,X1,Y,Y11 :
le(X,Y) <—
wait(X,X1),
wait(Y, Y1) | X1 =< Y1.

% lazy evaluator or arithmetic expressions
eval(X,Y) :-

wait(X,Y), integer(Y) | true.
eval(X+Y,Z) :-

eval(X?, X1), eval(Y?, Y1), plus(X1, Y1, Z).
eval(X-Y,Z2) .-

eval(X?, X1), eval(Y?,Y1), plusZ, Y1, X1).
eval(X*Y,Z) :-

* '.,.\._s' S

PN O

W

YT

NGNS

metaProlog/Concurrent Simulator

eval(X?, X1), eval(Y?,Y1), times(X1, Y1, Z).

plus(X,Y,2Z) :-wait(X,X1), wait(Y,Y1) | Z is X1+Y1.
plus(X,Y,2Z) :- wait(X,X1),wait(Z,Z1) | Y is Z1-X1.
plus(X,Y,2) :- wait(Y,Y1),wait(Z,Z1) | X is Z1-Y1.

times(X,Y,Z) :- wait(X,X1), wait(Y,Y1) | Z is X1*Yl.

times(X,Y,Z) :- wait(X,X1), wait(Z,Z1) | Y is Z1/X1.
times(X,Y,Z) :- wait(Y,Y1), wait(Z,Z1) | X is Z1/Y1.

member(X,(X | _]).
member(X, [Y | T]) :- member(X, T).

writel(X) :- var(X),\.
writel([]) :-!.
writel((H | T)) :- write(H), !, writel(T).

writelnl([]) :- nl,".
writelnl({H | T) :- write(H), nl,!, writelnl(T).

fread(X) :- write('>>"), read(X).

system1l((X is Y)).
systeml(true).
systeml(ancestors(Ancl)).
system1(call(X)).

con_retrieve(Theory, (Call <—Body),Flag) :-
functor(Call, F, N),
functor(Calll, F, N),
retrieve(Theory, (Calll <—Body)),
trace(concurrent_unify(D),(Call, Calll)),
concurrent_unify(Call, Calll, Flag).

con_retrieve(Theory, Call, Flag) :-
functor(Call, F, N),
functor(Calll, F, N),
retrieve(Theory, Calll),
trace(concurrent_unify(D) (Call, Calll)),
concurrent_unify(Call, Calll, Flag).

AL NN

--------------- P S S S e Y
AR S AR A, AL S R GO L R R AN,

Se e

KR
K

»

a's
.

-

| aadbiaernandia Al Al b o At ale Al Al A o Al Al Al ot gl ot ate 4l At -Alo il ol -l 4t a3 2 b gt ~al. gt el -k ab of 48 2l "ot 38 gt ui ‘af o1 o8 tat R R op R S taf o of o - .Y T8 T

P N PR N AT SN

Paaty 4t gl ply gin gto gt gty b gty pty gt gty gla pty glataty aU gy g8, fia fog gV tla Bia dta frg doahia b g b W T VY TR T TN TN VN TR TN TV VN UR WY W IR

%-'

o

l.'
) ' metaProlog Simulator 117
.

k:

v 12. A metaProlog Simulator.

‘

A

S /e e e e e mmm e e mm e e mm e e ees
"\

File: demo_react.pro
L Author: Kenneth A. Bowen
Date: 24 July1985

s Notes: Central interpreter for metaProlog
e */
¢ :-op(1000, xfy, '&).
-op(1150, xfy, '&&').
:-op(1100, xfy, '<--').
:-0p(1100, xfy,).
-op(1101, fy, all).
| :-op(990, fy, if).
y :-op(985, xfy, then).
_ :-op(980, xfy, else).
:r., demo(Theory, Goal)
’ e
” demo(Theory, Goal, Control).
o
» e
- demo(Theory, Goal, [])
empty(Goal).
- */
-
demo(Theory, true, (])
>, it
b' demo(Theory, Goal, [Reason ! Rest_Proof])
N select(Goal, SubGoal, Rest_Goals, Theory),
react(Theory, SubGoal, Reason, Continuation_Goals),
-J: merge(Continuation_Goals, Rest_Goals, New_Goal, Theory),
N demo(Theory, New_Goal, Rest_Proof).
&
~ react(Theory, demo(New_Theory, Subsid_Goal, Subsid_Proof),
. sbs(Subsid_Proof), true)
. L
:_: demo(New_Theory, Subsid_Goal, Subsid_Proof).
’.
:- react(Theory, demo(New_Theory, Subsid_Goal), sbs(Subsid_Proof), true)
. =
demo(New_Theory, Sub<id_(ival, Subsid_Proof).
_.:: react{Theory, current(Theory’, {current], true):—"'.
i" react(Theory, (Vars : Goal), strip rvars, Internal_Goal)
o - !u
[
v

- - - - - -) » -
* '\J‘"-f f' '. N

A « - '. " - - LI SR I g Rt R A R o« '.- 'f 'r) "'I’-‘{ 'I'{ - v 1% .-
e T e L A N A e S T T Y T Ty Tt Tty I T

PRl bt

OV RN ROV N ‘e p a't At Al g 4" e’ R WO W VL LW

metaProlog Simulator

make_internal((Vars : Goal), Internal_Goal, true).
react(Theory, not(Goal), neg{Goal), true)
\+(demo(Theory, Goal,).

react(Theory, (if Condition then SuccessGoal else FailureGoal),
if_then_else(s(Condition, Cond_Proof)), SuccessGoal)

demo(Theory, Condition, Cond_Proof), !.

react{Theory, (if Condition then SuccessGoal else FailureGoal),

if_then_else(f(Condition)), FailureGoal)
-

react(Theory, (if Condition then Goal), if_then(s(Condition, Cond_Proof)), Goal)
demo(Theory, Condition, Cond_Proof), !.
react(Theory, Goal, buiit_in(Geal), true)

built_in(Goal), !,
Goal.

/* --- Additions for frame processing....
react(Theory, Goal, fr(Frame_Trace), true)

Goal =., {Pred, Argl | Rest_Args],
is_theory(Argl),

Frame_Goal =.. (Pred | Rest_Args],
demo(Argl, Frame_Goal, Frame_Trace).

react(Theory, Goal, inh(Proof), true)
demo(Theory, is_a(Super_Frame_Name), _),
name_of(Super_Frame_Name, Super_Frame_Theory),
demo(Super_Frame_Theory, Goal, Proof).

react(Theory, update(Frame, Slot, New_Value), upd(Frame, Slot, New_Value), true)

Old_Assert =..[Slot, Old_Value],

drop_from(Frame, Old_Assert, Intermed_Frame),

New_Assert =.. (Slot, New_Value),

add_to(Intermed_Frame, New_Assert, New_Frame).
*/

/* Modified form to use to allow demon processing on update; similar
modification should be made to other frame axioms if demon processing
is desired there; e.g., on access, or on inheritance, etc

react(Theory, update(Frame, Slot, New_Value), upd(Frame, Slot, New_Value), true)

Old_Assert =..[Slot, Old_Valuel,
drop_from(Frame, Old_Assert, Intermed_Frame_0),

Sap tp' 2t e g0t - Sttt ptd ot gt LA o P s aths ity ke pias et gl P ulia” et

; metaProlog Simulator 119
hy New_Assert =.. [Slot, New_Value),

add_to(Intermed_Frame, New_Assert, Intermed_Frame_1),
! demo(Intermed_Frame_1,

demon(Slot, Old_Value, New_Value, Intermed_Frame_1), _).
=/

react(Theory, send(Destination_Theory, Message, Response),
send(Destination_Theory, Message, Response), true)

demo(Destination_Theory, receive(Message, Response), _).

react(Theory, assert(Database_Theory, Assertion, Response),
assert(Database_Theory, Assertion, Response), true)

demo(Database_Theory,
process(add(Assertion, Response),
Database_Theory, New_Database_Theory), _).

react(Theory, SubGoal, s(SubGoal, Rule), Rule_Body)
) i‘md(SubGoa], Theory, Rule),

N parts(Rule, Rule_Head, Rule_Body),
match(SubGoal, Rule_Head).

find(Goal, Theory_U/Theory_V, Clause)

;etrieve(Theory_U, subtheory(Theory_V), true,),
find(Goal, Theory_V, Clause).

Y YN

find(Goal, Theory, (Goal:— Body))

-

;'etrieve(Theory, Goal, Body, _).

parts((Head:— Body), Head, Body).

rH L LN

match(Item, Item).

-

X select(((SubSubGoal & SubSubGoals) & SubGoals),
' SubSubGoal, (SubSubGoals & SubGoals), _):—'.

, select((SubGoal & SubGoals), SubGoal, SubGoals, _):— .
select((SubGoal && SubGoals), SubGoal, bfifSubGoals), _):— !.
N select(Goal, Goal, true,).
merge(New_SubGoals, true, New_SubGoals, _):—'.
q merge(true, Continuation, Continuation, _):— !.

3 merge(New_SubGoals, Continuation, (New_SubGoals & Continuation), _).

A check_demo_spying_enter(Goal) —

metaProlog Simulator

spy_or_trace(Goal),
write('demo:enter: '),write(Goal),nl.

check_demo_spying_enter(Goal):—no_spy_or_trace(Goal).
spy_or_trace(Goal):—demo_spying(Goal).
spy_or_trace(Goal):—demo_tracing.

no_spy_or_trace(Goal):—
\+(demo_spying(Goal)), \+(demo_tracing).

check_demo_spying_exit(Goal):—
spy_or_trace(Goal),
write('demo:exit: '),write(Goal),nl.

check_demo_spying_exit(Goal):—
spy_or_trace(Goal),
write('demo:retry: '), write(Goal),nl, !, fail.

check_demo_spying_exit(Goal):—no_spy_or_trace(Goal).

demo_trace:— assert(demo_tracing).
A demo_notrace:— retract(demo_tracing).
demo_notrace.

File: meta_top_level.pro
Author: Kenneth A. Bowen
Date: 20 May 1985

start_up_meta.
start_up_meta

$prompt(2, ", 'I:),
Write(el J,nl,
write('metaProlog 0.5),nl,
write('(c) 1985 Kenneth A. Bowen'),nl,
write('All rights reserved.’),nl,nl,
write('system file? '),
read(System_File),
consult_and_go(System_File),
write('after consult_and_go succeed:..aborting to Prolog’),nl,
abort.

start_up_meta

abort.

consult_and_go(System_File)
metaProlog_consult(System_Theory, System_Id, System_File),
write('File),write(System_File),write(' consulted to theory '),

AR R RN R AR S LGS Wy SR N YA sy AN T AN TN T A T T .
., - o, A T R AT '..rf‘_{._fh(._{.:c._h-l.xu:x.q:"a-r-‘t.;_.*-.r '-.’.‘.-{-A.'L .L.r.'i

Chait anis ot S SR o

YR R TN XKW

metaProlog Simulator

write(System_Theory), nl,
demo(System_Theory, system_startup,

metaProlog_consult(System_Id, System_Id, System_File)

write('metaConsult:file="),write(System_File),n],
(var(System_Id), !, theory_gensym(System_Id); true),
see(System_File),

read_and_record(System_Id),

close(System_File),

asserta(parent_theory(System_Id, empty_theory, consult)).

read_and_record(System_Id)

read(Item), !,
dispatch_read_and_record(Item, System_Id).

dispatch_read_and_record(end_of_file, _):— !.
dispatch_read_and_record(Item, System_Id)

'make_internal(ltem, Head, Body),
assertz((Head:— Body), Ref),

assertz(belongs_to(Ref, System_Id)),
1

';ead_and_record(System_Id).

File: module_db_mgr.pro
Author: Kenneth A. Bowen
Date 19 May 1985
Module-based revisions begun 27 Aug 85

is_theory('$th.%'(_, _,).
retrieve(empty_theory, Goal, Body, Control):— fail.

retrieve((T1 & T2), Goal, Body, Control)

retrieve(T1, Goal, Body, Control) ; retrieve(T2, Goal, Body, Control).

retrieve(T, Goal, Body, Control)

clause(Goal, Body, Reference),
belongs_to(Reference, T).

belongs_to(Reference, T)

parent_of(T, T1, _),
belongs_to(Reference,T1).

/* Ground "belongs_to" assertions are created by add_to with asserta */

121

Prf).

080 84000 A 0 0% 1% 0% At e %0 8 At A0 1% % 0 s 8V e ate 87 ta 20, a0, 20 a0 2t .l gl af & 8 ‘sl ¥ ald Vab & ol *ag .8 tat & B nt “gt Pad igf ol 8.0 tep *

metaProlog Simulator 122
N
-
N
N
e add_To(Theory, Assertion, New_Theory_Id)
30 . t
3 —
N make_internal(Assertion, Head, Body),
p) theory_gensym(New_Theory_Id),
d assertz((Head:— Body), Ref),
| asserta(belongs_to(Ref, New_Theory_ld)),
- asserta(parent_theory(New_Theory_Id, empty_theory, add(Assertion))).
o
:\‘_ mstance((Vars : Goal), Internal_Goal, Internal_Variables)
o — 1,
o create_variables(Vars, Internal_Variables),
replace(Goal, Vars, Internal_Variables, Internal_Goal).
)
::: instance((Goal/Vars), Internal_Goal, Internal_Variables)
- — !
., instance((Vars : Goal), Internal_Goal, Internal_Variables).
<
2 instance(Goal, Goal, []).
N
)
D 'j make_internal(all(Item), New_Head, New_Body)
W - !
N -
::; make_internal(Item, New_Head, New_Body).
~ make_internal((Vars : (Head <-- Body)), New_Head, New_Body)
o —_ !,
f.; create_variables(Vars, Internal_Vars),
:_‘.. replace(Head, Vars, Internal_Vars, New_Head),
- replace(Body, Vars, Internal_Vars, New_Body).
)
’ make_internal((Vars : Fact), New_Fact, true)
-~ — !
':.-. create_variables(Vars, Internal_Vars),
-:_ replace(Fact, Vars, Internal_Vars, New_Fact).
e make_internal((Head <-- Body), Head, Body):—
make_internal(Fact, Fact, true):— !.
':: create_variables({], {]).
.';'_ create_variables([{Identifier | Rest_Identifiers], [Var | Rest_Vars])
— !,
:‘ create_variables(Rest_Identifiers, Rest_Vars).
£
! :: replace({A & B), Vars, Internal_Vars, (New_A & New_B))
— !
replace(A, Vars, Internal_Vars, New_A),
"'.'f replace(B, Vars, Internal_Vars, New_B).
L4
o replace([], Vars, Internal_Vars, []).
3
| : replace([First | Rest], Vars, Internal_Vars, [New_First | New_Rest})
>
:f
\.:'-,-,11/..._:/\._'- s Lol O . -"-. e

el ‘_ f -&") .r.,r,'.\.rﬁ-r,'-rr e .r\.r__z\.'-_r.

‘-'iv o ~

a LN

Y PR) >

OLOUOUBLOLD

~

Sa8 8ol 200 Aal a0 Va0 tat ¥op Ha@ Tal "ub da0 2@ Vaf ¢

metaProlog Simulator

e !’
replace(First, Vars, Internal_Vars, New_First),
replace(Rest, Vars, Internal_Vars, New_Rest).

replace(4, _, _, A)

'integer(A), "

replace(A, Vars, Internal_Vars, New_A)

‘atom(A), !,
look_up(Vars, A, Internal_Vars, New_A).

replace(A, Vars, Internal_Vars, New_A)

A =.[Operator | Args], !,
replace(Args, Vars, Internal_Vars, New_Args),
New_A = [Operator | New_Args].

lock_up([], A, _, A):—!.

look_up(fA | _], A, [New_A | _], New_A):—!,

look_up([_ | Rest_Vars], A, [_ | Rest_Internal_Vars}], New_A)
1

look_up(Rest_Vars, A, Pest_Internal_Vars, New_A).

‘@ % % '(0).

theory_gensym(M)

retract(@# % % '(N)),
Mis N+1,
assert('@# % % '(M)).

append((}, X, X).
append((H ! T], Y, (H | Z)

append(T, Y, Z).
bagOfiTemplate, Goal, Output)

gensym(Tag),

assert('%bag% Of% store % '(Tag, (1).!,

‘%bag O%f '(Tag, Template, Goal, Output).
‘%bag O%f '(Tag, Template, Goal, Output)

Goal, add_element_bagofiTag, Template), fail.

‘%bag O%f '(Tag, Template, Goal, Output)

PR R I)

.r' e el M A L R N P T ORGP U AL SN NN e e T e e S T e e e e
. M R y A " h - - o [- ~ - - -

3

PO OV OO R U UV U O U

123

........

metaProlog Simulator

"%bag% Of% store % '(Tag, Temp),
retract('%bag% Of% store % '(Tag, _)),
reverse(Temp, Output).

add_element_bagof{Tag, Template)

"%bag% Of% store % '(Tag, Current),
retract('%bag% Of% store % '(Tag, Current)),
assert('%bag% Of% store % '(Tag, [Template | Current])), !.

reverse(X, X).

gensym(Tag)
;‘etract('@g#e$n%s"y&m*'(gensym(N))), !
Mis N+1,
Tag = gensym(M),
assert('@g#e$n%s y&m*'(gensym(N))).

gensym(gensym(0))

.assert('@g#e$n%s"y&m*'(gensym(O))).

File: system_predicates.pro
Author: Kenneth A. Bowen
Date : 19 May 1985

built_in(true).
built_in{(fail).
built_in(update(_,_,_)).
built_in(add_To(_, _, M.
built_in(drop_From(_, _, _)).
built_in(metaProlog_consult(_,_,)).
built_in(read(_)).
built_in{write(_)).
built_in(nl).
built_in(atom(_)).
built_in(instance(_, _, _)).
built_in(halt).
built_in(abort).
built_in(save(_)).
built_in((spy _)).
built_in((nospy _)).
built_in(trace).
built_in(notrace).
built_in(demo_trace).
built_in(demo_notrace).
built_in(demo_spy(_)).
built_in(deep_spy(_)).
built_in(no_demo_spy(_)).
built_in(no_deep_spy(_)).
built_in(bagOf{_, _, _)).
built_in(set_slot(_, _, _).

124

N \J WL 4 -, A\ Lo pt ” ¢, * u AT W W ¥a v - W] ..,...,.'
metaProlog Simulator 125
built_in(make_frame(_)). 0

built_in((_ <).
built_in({(_ =< _)).
built_in((_ > _)).
built_in((_ >= _)).]
built_in((_ is _)). &
built_in((_ =).

built_in(built_in(_)).

LRI iy 2 T

LI

a4 % %

T AT At et .- R (U TP L T LI
AN AR RO -’.f.‘-"-'."{f.,"(r . \."-.'-."-.'-. S O RCATRRCA AN RPN Q' o .\\ PRI

L ™ "W Y RS VY Y T T T YR YW

metaProlog Simulator

12.2. Towards a More Serious Simulator (by Keith Hughes).

The following is a description of the current metalrolog simulator.
The idea is different from the previous metaProlog simulator in that
clauses are now fully compiled, rather than interpreted (at least as far as [
understand the previous implementation). This compilation is achieved
through the guard clause, an idea proposed by Andy Turk for compiling
meta at the machine level.

The basic idea is that theories are denoted by lists. When an addTo or
dropFrom is done, a unique theory ID is generated. The path to this new
theory is then the new theory ID appended to the end of the old theory
descriptor. In the case of an addTo, a new clause is asserted, while in the
case of a dropFrom, the old clause in the database is modified.

For example, if the fact p is added to the empty theory ({]), a new theory
descriptor of [0] would be created (addTo([],p,[0])). A rewritten form of p is
then asserted into the database. This new form has an extra argument
added to the beginning of the head and to each subgoal in the body of a
clause. For instance, in the case of p above, the new clause asserted would

be
p(TheoryIn) :— guard(TheoryIn,[0_1,(]).

guard does the real work in meta. It makes sure that the clause can be
used in TheorylIn, the theory descriptor handed to the call of p by demo. The
second argument of guard describes the theories in which p is known by
giving the initial sequence of all theories that can access p. For each theory
that cannot access p, the third argument of guard contains the initial
sequence of all theories where the clause is no longer valid. This third
argument will be a list of lists. A clause with aguments and subgoals, such
as

p(A) :— g(A,B), r(B)
would be asserted into theory [0,1] as
p(TheoryIn,A) :(—

guard(TheoryIn,[0.11][],
g(TheoryIn,A,B),r(Theoryln B).

126

[
A
[
!
\
'
A

' metaProlog Simulator 127

The theory behind guard is simple. If a sequence of addTo's is done,
the theory descriptor coming out of the last addTo is a list of that theory. For
o example,
N

:— addTo([],p,T1),addTo(T1,q,T2),addTo(T2,r,T3)

A .

_: would instantiate T1 to [0], T2 to {0,1], and T3 to [0,1,2]. p is known in all of

. these theories, and the second argument of it's guard clause is [0l_],

'_ which would unify with any of the above theory descriptors (T1,T2,T3). [C!_]
is said to be an initial sequence of these theory descriptors. So, any theory

[+ descriptor starting with a 0 knows about p. q's initial sequence is [0,11_].

This is not an initial sequence of [0], so cannot be found in the first theory,

y but will be found in theories [0,1] and [0,1,2].

-4

% dropFrom works by adding to the third argument of a clause. To

T continue the above example, if a dropFrom([0],p,T4) is executed, T4 will be

‘:.f instantiated to [0,3], and the clause in the database will be changed to

) =

p(TheoryIn) :— guard(TheoryIn,[01_],[{0,1,21_1]).

So, this third argument contains a list of initial sequences of theory
‘,?. descriptors with roots where p was defined (theory [0] in this case), where p
: no longer exists. If p was put into meta from another addTo, this addTo
» would create a different clause for p of the same form as above. The guard
) clause, if the first two arguments unify, will check TheoryIn against the
» theory descriptors in the list in the third argument position, and fail guard
¥ if any are an initial sequence of TheoryIn.

. guard also handles the union of theories. If the user does a
N demo(T1+4+T2+...4Tn,Goals), the entire group of T1+T2+....+Tn is passed
;". through to the Goals in the first argument. If guard notices a union, it will
A try and find the clause in the first theory in the list. If it isn't there, the next
% theory will be tried. This checking is put into guard to avoid excess work. If
: a late subgoal in the list of Goals fails to be found in T1, the interpretor must
Mt not fail all the previous subgoals just because this subgoal can't find
3 anything in T1. So, this subgoal will look in T2 next.

" demo(TheoryID,Goals) will call Goals with a particular TheoryID. The
: list of goals is rewritten to pass in TheoryID as the first argument. If
) TheoryID is a variable, demo will unify TheoryID to a theory descriptor

o

metaProlog aulator 128

where the goal is true. addTo and dropFrom are implemented so that they

can backtrack. If a cut is executed, when backtracking is done, the clauses

will be left in the database. This is not a problem, however, since the guard
3 for these clauses will never fire again.

B There are two extra builtins added for fun. One 1is called
baseTheory(FileName), which is like consult. The file contains lines like

theory(TheoryName).

theory for TheoryName.....
endTheory.
theory(NewTheoryName).

etc.

Once a theory is described, clauses can also be added by
TheoryName :: Clause.

To use clauses in a theory entered using baseTheory, the predicate
theory(TheoryName,TheoryID) is used in conjunction with demo. For
instance,

would pick up the theory ID bound to the name phideaux and use it in
demo. These theory names cannot themselves be used by the core meta
predicates.

An example of a file for baseTheory follows.

: theory(a).

' a(a). a(b). a(c). a(d).
endTheory.
theory(b).

A b(a). b(b). b(c). b(d).

) endTheory.

' b :: b(e). a :: a(e) :— a(b).

‘NS AT Nh S N S O % U N U N) Sl A L S Tl i e e A I O L S T T el S S S i
ol

A o e e 2 e Y Tt e e A e e T e
L) . 3 N N . . -

Vol Vol Lol B Yo AgR g Sog 0.8 9.0 b.p ¢ L~ PR o 0 N RN af Ael taR B ol Taf ‘ol iof § ‘ol ap oy ¥

R
v
1 metaProlog Simulator 129
[
A
A I e e e
) demo(TheorylL ,Goals) will call Goals with a particular TheoryID. If TheoryID
a is a variable, demo will unify TheorylD to a theory descriptor where the goal is
’ true.
.l
:: addTo and dropFrom are as they should be; they even backtrack. There are two
" extra builtins I added for stuff I'm doing. One is called
baseTheory(FileName),
",.' which is like consult. the file contains lines like
.
o theory(TheoryName).
theory for TheoryName.....
., endTheory.
N theory(NewTheoryName).
: N etc,
:: Once a theory is described, clauses can also be added by
. TheoryName :: Clause.
>
~
' For an example, see the file ~hughes/research/meta/test. To use clauses in a
N theory entered using baseTheory, the predicate theory(TheoryName,TheoryID)
o is used in conjunction with demo. for instance,
...... , theory(relativity, T1), demo(T1,Goal),
S
:j would pick up the theory ID bound to the name relativity and use it in demo.
. These theory names cannot themselves be used by the core meta predicates.
>
The reader doesn’'t understand variable quantification yet; standard prolog
T rules are used.
::: The dropFrom bug is fixed. Clauses really disappear when they are supposed to. It
'j makes the code run a little slower when there are a lot of dropFroms, but that's
’ life.
B */
- % written by keith hughes 4/10/86
y %
Y, % modified by ken bowen 4/28/86 --
< :—consult(’../system_predicates.pro’).
P
. :— op(1200,xfy,::).
", :—op(1000, xfy, '&").
2 —op(1150, xfy, '&&').
—op(1100, xfy, '<-').
h, —op(1100, xfy, ":").
* : —op(1101, fy, all).
N :—op(990, fy, if).
1~ :—op(985, xfy, then).
' —op(980, xfy, else).
"
N

Te R e RN e g v e T LT e e P T e R P N I S .-
.t LG AL .-_.r.-_«-. .-:_..-_ Cotul o, -_.r_.\(-, A ..z..' o g L ol S

-~ - - -

-' I\-f \l__d‘

metaProiog Simulator

‘o
‘

"¢ guurdiCurTheory,BottomNode, WherelAm,ExclusionList):

‘¢ CurTheory is where we currently are in the execution state at this time.

‘¢ BottomNode is the last element in the list CurTheory
¢ WherelAm is the theory in which the clause was compiled into

¢ ExclusionList is a list of the bottom elements of a theory list where
“¢ the clause no longer exists

guard(Theory,CurTheory,ExclusionList) :—
nonvar(Theory),
Theory =FirstTheory+RestTheories,
guard(FirstTheory,CurTheory,ExclusionList).
guard(Theory,CurTheory,ExclusionList) —
nonvar(Theory),
Theory =FirstTheory+RestTheories,
guard(RestTheories,CurTheory,ExclusionList).
guard{(CurTheory,CurTheory,ExclusionList) :—
notDropped(ExclusionList,CurTheory).

notDropped(Element,) :—
var(Element),’.
notDropped((},) — .
notDropped([E1 ! _],E2) :—
initial(E1,E2),
', fail.
notDropped([_| Rest],E) :—
notDropped(Rest E).

initial(E1,E2) :(—
var(E2),! fail.

initial(E1 E2) (—
var(El),\.

initial((X | Rest1],[(X | Rest2]) :—
initial(Rest1,Rest2).

%

% addTo(OldTheory,Clause,NewTheory): add Clause to OldTheory, creating

% NewTheory
%

addTo(CurTheory,Clause,NewTheory) :—
newTheoryDesc(CurTheory,NewTheory,End),
adjustClause(Clause,NewTheory,NewClause),
asserta(clauses_ofiNewTheory, New(Clause)),
xassert{NewClause, DBRef),
End =(), % yuch gasp argh
backtrackAddTo(DBRef).

exhibit(Theory) —
clauses_of{Theory,Clause),
show_clause(Clause),
fail.

exhibit(Theory).

S

R R - T U L L P C T R
B S 8, S S T R B S
. B L} L L)

130

...........

Dylatraglex

‘I...., q’\.. -J\""

metaProlog Simulator 131

show_clause(C) :— write(C),nl.
C

¥

this backtracks addTo

ol ot

backtrackAddTo(DBRef).
backtrackAddTo(DBRef) —
Sdbref_erase(DBRef),
fail.

QQ R

» just append, sort of
%

newTheoryDesc([],[NewID!End),End) :— !,
newTheoryID(NewID).

newTheoryDesc({X|L1],[X|L2],End) :—
newTheoryDesc(L1,L2,End).

currentTheoryID(0).

newTheoryID(X) :—
currentTheoryID(X),
retract(currentTheorylD(X)),
NXisX+1,
assert(currentTheoryID(NX)).

adjustClause((Head :— Tail),TheorylD,(NewHead :— Guard,NewBody)) :— !,
adjustHead(Head,NewHead,TheorylIn),
adjustBody(Tail,NewBody,TheoryIn),
makeGuard(TheoryID,TheoryIn,Guard).

adjustClause(Head,TheoryID,(NewHead :— Guard)) :(—
adjustHead(Head,NewHead,Theoryln),
makeGuard(TheoryID,TheoryIn,Guard).

makeGuard(TheoryID,Theoryln,guard(TheoryIn,TheoryID,[])).

adjustHead(Head,NewHead,Theoryln) :—
Head =.. [Functor! Args),
NewHead =.. (Functor,Theoryln | Args].

adjustBody((addTo(T1,Goal, T2),Rest) (addTo(T1,Goal, T2),NewRest),TheorylD) :—

adjustBody(Rest,NewRest,Theory!D).
adjustBody((demo(T,Goal),Rest),rdemo(T,Goal),NewRest), TheoryID) :—

adjustBody(Rest,NewRest TheoryID).
adjustBody((dropFrom(T1,Goal T2) Rest),

(dropFrom(T1,Goal, T2),New Rest), TheoryID) :— !,

adjustBody(Rest,NewRest, TheoryID).
adjustBody((First,Rest),(First, Nvw Rest) TheoryID) :(—

built_in(First), !,

adjustBody(Rest,NewRest, Theury 1D
adjustBody((First,Rest),(Newlir<«t NewRest), TheorylD) :(— !,

First =.. (Functor | Args],

L R S T TS SRS TN N R LN . TR AP RN
NN AT ot ~ PR
NN 2. o ' ':&LL_&A ‘.'..‘A.ﬁ...x'._\ _s_.xM_L\mMMAL‘,LMLM.L

-

" e et w2t Bi” AR Fa‘.ta' 08’ - " aat gal i A€ gt @at Ba

metaProlog Simulator

NewFirst =.. [Functor,TheoryID | Args],

adjustBody(Rest,NewRest,TheoryID).
adjustBody(addTo(T1,Goal,T2),addTo(T1,Goal, T2),) :— .
adjustBody(demo(T,Goal),demo(T,Goal),) :— .
adjustBody(dropFrom(T1,Goal, T2),dropFrom(T1,Goal, T2),_) :— .
adjustBody(Only,Only,TheorylD) :—

built_in(Only),!.
adjustBody(Only,NewOnly,TheoryID) :—

Only =.. [Functor!Args],

NewOnly =.. ([Functor,TheoryID | Args].

%D

% dropFrom(OldTheory,Clause,NewTheory)
%

dropFrom(TheorylD,Clause,NewTheoryID) :—
newTheoryDesc(TheorylD ,NewTheoryID,NewEnd),
fixClause(Clause,TheorylD,End,NewTheoryID),
NewEnd =[]. % yech arggarg

fixClause((Head :— Body),TheorylD,End,NewID) :— !,
adjustHead(Head,NewHead,TheorylIn),
adjustBody(Body,NewBody,TheoryIn),
clause(Head,(guard(TheoryIn,WherelAm,Exclude),NewBody),ADBRef),
not(not(guard(TheoryID,WherelAm,Exclude))), % horrider and horrider
$dbref_erase(ADBRef),
xassert((NewHead :(—
guard(TheoryIn,WherelAm,[NewID | Exclude]),NewBody),DBRef),
backtrackDropFrom(DBRef,
(NewHead :— guard(TheoryIn,WherelAm,Exclude),NewBody)).
fixClause(Head,TheoryID,End,NewID) :—
adjustHead(Head,NewHead,TheorylIn),
clause(NewHead,guard(TheoryIn,WherelAm,Exclude),ADBRef),
not(not(guard(TheoryID,WherelAm,Exclude))), % horrider and horrider
$dbref_erase(ADBRef),
xassert((NewHead :(— guard(Theoryln,WherelAm,[NewID | Exclude])),DBRef),
backtrackDropFrom(DBRef ((NewHead :— guard(Theoryln,WherelAm,Exclude)))).

%

% this is so dropFrom can backtrack
%

backtrackDropFrom(DBRef,Clause).
backtrackDropFrom(DBRef,Clause) :—
$dbref_erase(DBRef),
assert(Clause),
fail.

%

% demo(Theories,Goals)
%

demo(Theories,Goals) :—

var(Theories),!,
rewriteGoals(Goals,Theories,NewGoals),
call(NewGoals),

...........
............

o

metaProlog Simulator 133

fixTheory(Theories).

demo(Theories,Goals) :(—
rewriteTheory(Theories,NewTheories),
rewriteGoals(Goals,NewTheories, NewGoals),
call(NewGoals).

% needed to fill in last element part of theory description

fixTheory([LastElement]) :(— .
fixTheory([_{ RestElements]) :—
fixTheory(RestElements).

%
% add in theory ID carriers
%

rewriteGoals((addTo(T1,Goal,T2),RestGoals),Theories,
(addTo(T1,Goal, T2),NewRestGoals)) :— !,
rewriteGoals(RestGoals,Theories,NewRestGoals).
rewriteGoals((demo(T,Goal),RestGoals),Theories,
(demo(T,Goal),NewRestGoals)) :— !,
rewriteGoals(RestGoals, Theories, NewRestGoals).
rewriteGoals({(dropFrom(T1,Goal, T2),RestGoals),Theories
(dropFrom(T1,Goal, T2),NewRestGoals)) :— !,
rewriteGoals(RestGoals, Theories, NewRestGoals).
rewriteGoals((setOf(T,Gs,L),RestGoals), Theories,
(setOfiT,NGs,L),NRestGoals)) :—!,
rewriteGoals(Gs,Theories, NGs),
rewriteGoals(RestGoals,Theories, NRestGoals).
rewriteGoals((FirstGoal,RestGoals), Theories,(FirstGoal, NewRestGoals)) :— X
built_in(FirstGoal),!,
rewriteGoals(RestGoals,Theories,NewRestGoals).
rewriteGoals((FirstGoal,RestGoals),Theories,(NewFirstGoal, NewRestGoals)) :(— !,
FirstGoal =.. [Functor! Args],
NewFirstGoal =.. [Functor,Theories | Args],
rewriteGoals(RestGoals, Theories,NewRestGoals).
rewriteGoals(demo(T,Goal),Theories,demo(T,Goal)) :— !.
rewriteGoals(addTo(T1,Goal, T2),Theories,addTo(T1,Goal, T2)) :— .
rewriteGoals(dropFrom(T1,Goal,T2),Theories,dropFrom(T1,Goal, T2)) :— !.
rewriteGoals(setOf(T,Gs,L), Theories, setOf{T,NGs,L)) :—!,
rewriteGoals(Gs,Theories,NGs).
rewriteGoals(OnlyGoal,Theories,OnlyGoal) :(—)
built_in(OnlyGeoal),!.
rewriteGoals(OnlyGoal,Theories,NewOnlyGoal) :—
OnlyGoal =.. [Functor! Args]),
NewOnlyGoal =.. [Functor,Theories | Arg-1.

[

%

% baseTheory(File): read in a base theory
%

baseTheory(File) :—
see(File),
procBaseTheory,

4 metaProlog Simulator 134
¥al
procBaseTheory :—
read(Clause),
N procBaseTheory(Clause).
.
. procBaseTheory(end_of_file) :— .
N procBaseTheory(theory(TheoryName)) :— !,
newTheoryID(NewlID),
. assert(theory(TheoryName,[NewIDJ),
: write(TheoryName),write(' =), write{(NewID]),nl,
L readTheoryClauses([NewID1_]},
) procBaseTheory.

procBaseTheory((TheoryName :: Clause)) :—
theory(TheoryName,TheoryID),
fixXID(TheoryID,NTheoryID),

: addTo(NTheoryID,Clause),
: procBaseTheory.
b readTheoryClauses(TheoryID) :—
read(Clause),
- procTheoryClause(TheoryID,Clause).
: procTheoryClause(_,end_of_file) — !.
. procTheoryClause(_,endTheory) :— !.
. procTheoryClause(_,stable(Fact)) :—!,
assert(stable(Fact)),
; readTheoryClauses(TheoryID).
. procTheoryClause(_,Clause) :—
. stable(Clause),!,
‘, make_internal(Clause, Head, Body),
‘ enter(Head,Body),
readTheoryClauses(TheoryID).
: procTheoryClause(TheoryID,Clause) :(—
- make_internal(Clause, Head, Body),
- addTo(TheoryID,(Head :— Body)),
’ readTheoryClauses(TheoryID).
' stable(stable()).
0 stable((Head <- Body)) :(— !, stable(Head).
N stable((all Vars : Clause)) :— !, stable(Clause).
. enter(Head, true) :— ! assertz(Head).
. enter(Head, Body) :— assertz((Head :— Body)).
A fixID((ID],(IDI_)) :— I
fixID([ID | Rest],[ID| ERest]) :(—
. fixID(Rest,ERest).
. %
% addTo(TheorylD,Clause): add Clause to TheoryID with no new ID
y %
| addTo(TheoryID,Clause) :—
_; adjustClause(Clause,TheorylD),NewClause),
assert(NewClause).
) %

T AN T T N T e e e e AT AT R N S Y T N T T T e

metaProlog Simulator 135

% rewriteTheory(OldTheory,NewTheory): rewrite virtual theory descriptor
% for demo

%

rewriteTheory(OldTheory,OldTheory) \—
var(OldTheory),!.

rewriteTheory(OldTheory-Clause,NewTheory) :(—
subtractClause(OldThecry,Clause,NewTheory).

rewriteTheory(OldTheory+QOldTheory2,NewTheory+NewTheory2) —
rewriteTheory(OldTheory,NewTheory),
rewriteTheory(OldTheory2,NewTheory2).

rewriteTheory(OldTheory,NewTheory) :— %take care of named theories
theory(OldTheory,NewTheory),!.

rewriteTheory(OldTheory,0ldTheory).

subtractClause(FrontTheory+RestTheories,Clause,
NewFrontTheory+NewRestTheories) .— !,
subtractClause(FrontTheory,Clause,NewFrontTheory),
subtractClause(NewRestTheories,Clause,NewRestTheories).
subtractClause(Theory,Clause,NewTheory) :—
rewriteTheory(Theory,NTheory),
dropFrom(NTheory,Clause,NewTheory).

instance((Vars : Goal), Internal_Goal, Internal_Variables)

1

c;eate_variables(Vars, Internal_Variables),
replace(Goal, Vars, Internal_Variables, Internal_Goal).

instance((Goal/Vars), Internal_Goal, Internal_Variables)

instance((Vars : Goal), Internal_Goal, Internal_Variables).
instance(Goal, Goal, []).

make_internal(all(Item), New_Head, New_Body)

make_internal(Item, New_Head, New_Body).

make_internal{(Vars : (Head <- Body)), New_Head, New_Body)
—1
make_list(Vars, LVars),
create_variables(LVars, Internal_Vars),
replace(Head, LVars, Internal_Vars, New_Head),
replace(Body, LVars, Internal_Vars, New_Body).

make_internal((Vars : Fact), New_Fact, true)

1

make_list(Vars, LVars),
create_variables(LVars, Internal_Vars),
replace(Fact, LVars, Internal_Vars, New_Fact).

make_internal((Head <- Body), Head, Body) :(— .

make_internal(Fact, Fact, true) :— '

[

AL

. 4.
DR A e

gl QU AUy g8, 87 8 in gts {la g9 gla'Bty §8a nta-are gig o d'a b 8'n.0"0.4'0 40,472, 0'2 4’ d'a 4% 9"

metaProlog Simulator

make_list((], [1) :—".
make_ list(X | Y], (X | YD) :—".
make_list(X, [X]).

create_variables([], (1) :—'.
create_variables([Identifier | Rest_Identifiers], (Var | Rest_Vars])

1

*y

create_variables(Rest_Identifiers, Rest_Vars).

replace(A, _, _, A)

(integer(A);var(A)), !,

r.place((A & B), Vars, Internal_Vars, (New_A , New_B))

replace(A, Vars, Internal_Vars, New_A),
replace(B, Vars, Internal_Vars, New_B).

replace([], Vars, Internal_Vars, []).

replace({[First | Rest], Vars, Internal_Vars, [New_First | New_Rest])

replace(First, Vars, Internal_Vars, New_First),
replace(Rest, Vars, Internal_Vars, New_Rest).

replace(A, Vars, Internal_Vars, New_A)

atom(A), !,
look_up(Vars, A, Internal_Vars, New_A).

replace(A, Vars, Internal_Vars, New_A)

A =..[Operator | Args],!,
replace(Args, Vars, Internal_Vars, New_Args),
New_A =..[Operator | New_Args].

look_up((], A, _, A) :— L.
look_up(fA | _), A, [New_A | _], New_A) :(— !
look_up([_ | Rest_Vars], A, [_ | Rest_Internal_Vars], New_A)

look_up(Rest_Vars, A, Rest_Internal_Vars, New_A).

'‘@# % % (0).

theory_gensym(M)

retract{('@# % % '(N)),
Mis N+1,

assert(@# % % '(M)).

. - .
KRNI Ty -\._- -r\ \-/: ™

136

5tk

metaProlog Simulator

append((], X, X).
append((H 1 T), Y, (I1 1 Z))

append(T, Y, Z).

setOfiTempl, Gs, L) :—
setof(Templ, Gs, L), .
setOf{Templ, Gs, []).

xassert(Clause,DBRef) :— xasserta(Clause,DBRef).
xasserta(Clause,DBRef) (—
builtins:get_head_information(Clause,TransformedClause,Module,ProcName,Arity),
$compile_clause(Module,TransformedClause,code,DBRef),
$dbref_asserta(Module,ProcName,Arity, DBRef).

137

i R S 4

AP

LI

....................

Semantic Foundations

12. Semantic Foundations.
Subsection 13.1: A Formal Deduction Calculus

To precisely specify the metaProlog system, we first specify the
mathematical formal system of which the computational system is an
implementation. The specifications (4.2) of Part B fix the language of the
system. To complete the specification of the formal system, we must
supply the rules of proof. Note that just as with the specification (4.2), the
following specification of the rules of proof of mP takes place in a
language (technical English) functioning as a metalanguage for mP.
First we must define some auxilliary notions.

Definition 13.1. An environment is a finite set (table) of ordered pairs
whose first element is a logical variable of mP and whose second element
is a term of mP such that no two ordered pairs have the same first
element (i.e., the set defines a function or mapping).

IfE is an environment and X is a logical variable, we will say that E
is defined on X or X is defined in E if there is some term T such that the
ordered pair <X,T> belongs to E.

Definition 13.2. Environment E2 is an extension of environment El
provided that E1 is a subset of E2.

Definition 13.3.
(.1) An expression is either a term or a literal.

(.2) If X and Y are sets, we will write X & Y for the union of X and Y. If
X is a set and z is a possible element of X, we will write X & z for
Xufz).

(.3) An at.m <U> occurs freely in a clause
(«V1>,...,<Vn>|:M

provided that <U> occurs in M and is distinct from each of
<V1>,...,<Vn>.

(.4) IfCis the clause

.....

138

Semantic Foundations 139

[«wl>,...,<wn>]:M
and D is the formula
[<vl>,...,<vn>]:N,

if none of <wl>,...,<wn>, occur freely in N, and M results from N by
simultaneously replacing vi by wi fori = 1,...,n, we say that C is a
variant of D.

(.5) We say that aclause Cis ina theory T if there isa variant C' of C
which satisfies the following:

1) TisD&S, and either C'isDor C'isin S;
1) TisTl & T2 and C'is either in T1 or is in T2;
111) Tis[D | L], and either C'is D or C' is in L.

Definition 13.4. Let A and B be expressions and let E1 and E2 be
environments. The relation

match(A, B, E1, E2) (13.5)
is defined (at a level meta to mP) recursively as follows:

. (.1) match(A, B, E1, E2) holds if A and B are identically the same constant
! and E2 is identical with E1.
) (.2) match(A, B, E1, E2) holds if A is a logical variable which is not defined
in E1 and E2is E1 + <A,B>.
(.3) match(A, B, E1, E2) holds if A is a logical variable which is defined in
E1 with <A, T> in E1 and match(T, B, E1, E2) holds.
(.4) match(A, B, E1, E2) holds if B is a logical variable which is not defined
in E1 and E2is E1 + <B,A>.
(.5) match(A, B, E1, E2) holds if B is a logical variable defined in E1 with
<B, T> in El1 and match(A, T, E1, E2) holds.
(.6) match(A, B, E1, E2) holds if A and B are of the forms

<op>(C1,...,Cn) and <op>(D1,...,Dn),

respectively, and match_list([C1,...,Cn], [D1,...,.Dn],E1,E2) holds.
(.7) match_list(L1, L2, E1, E2) holds if L1 and L2 are both empty and E1 is

(.8)

(.9)

some fixed order. Expressions such as "the first n logical variables ...
refer to this ordering.

Oa gia Qg i B gL alo Yol L Bl ol Aol Bad Sl G 00 Rt 'L A L A0 0 L o0 M ol ot gie a\hatatofa JNd

Semantic Foundations 140

identical with E2.
match_list(L1, L2, E1, E2) holds if the heads of L1 and L2 are H1 and
H2, respectively, the tails of L1 and L2 are T1, and T2, respectively, if

match(H1, H2, E1, E3)
holds, and if

match_list(T1,, T2, E3, £2)
holds.

The only conditions under which match or match_list hold are those
specified by (.1)-(.8) above.

Definition 13.6. If E and F are expressions, C1,...,Cn are logical variables,
and T1,...,Tn are terms, then

subst(E, C1,...,Cn, T1,....,Tn, F) (13.7)

holds if and only if F is the expressior resulting from the simultaneous
substitution of T1,...,Tn for C1,...,Cn throughout E.

We will assume that the logical variables of mP can be enumerated in

Definition 13.8. A d-expression is an expression (meta-level to mP) of the
form:

dT, G, E, P) (13.9)

where:
T is theory of mP;
G is a goal of mP;
E is an environment;
P is a list (possibly) empty of expressions of the form s(T,GE,R),
where R is either a clause or various constants.

Definition 13.10. A d-expression

d(T, <empty>, E, P) (13.11)

AILARFS] |

2T

Semantic Foundations

is said to be terminal.

Definition 13.12. An m-derivation is a finite sequence of d-expressions
such that the last d-expression in the sequence is terminal and each d-
expression in the sequence after the first follows from the preceeding by
one of the rules of inference (13.21) - (13.yy) listed below.

Definition 13.13. If G is a primitive goal:
(.1) If Gis aliteral, then

selection(G, G, <empty>) (13.14)
holds.
(.2) If G is the primitive goal (H,J) where H is a literal, then
selection(G, H, J) (13.15)
holds.
(.3) If Gis the primitive goal (H,J) where H is not a literal, and if
selection(H, K, L)
holds, then
selection(G, K, (L,J))
holds.
Definition 13.17. If G is a primitive goal, A <— Bis a rule matrix, and
selection(G, H, K)
holds, then
transform(G, A <-- I3, (B, K)) (13.18)
holds, where if K is <empty>, then (B, K) is B.

Definition 13.19. If G is a primitive goal, A is a fact matrix, and

T O AR LN AN N TR T

W A A I A,

SN) WNN

Semantic Foundations 142

selection(G, H, K)
holds, then
transform(G, A, K) (13.20)
holds.
Inference Rule 13.21.
d(T, G, E, P)
AT, G, E, P)
provided there exists a clause

[<cl>,...,<en>] : C

in T such that if <D1>,...,<Dn> are the first n logical variables of mP not
occurring in G, E, or P (briefly, are unused), if

subst(C, <cl>,...,<cn>, <D1>,...,<Dn>, C) (13.22)
holds, if the head of C' is A', if

select(G, H, J) (13.23)

an > o

holds, then

E match(H, A, E, E") (13.24)
h
holds, and
transform(G, C', G") (13.25)
, and P'is
; [s(T, G, E', [<cl>,...,<cn>] : C) | Pl (13.26)

AP T R At T T P VS WL SR Pty i T
»O‘\Q'._ ‘. " . ! J'\ e _-t" " .

] s TR T e T S e S S T S P T I TR
W.r ORGP ‘\F.f-l' R X

v a €. ¥

Semantic Foundations 113

Inference Rule 13.27.

d(T, demo(T', G, E, P)

P

d(T, G, E, (s(T', G, E, reflection) | P])

Inference Rule 13.28.
d(T, current(U), E, P)
AT, carrentU), B, (o, current 0y, &, ewmrert) 18

where

match(T, U, E, E) (13.29)

holds.

AN

Inference Rule 13.30.
d(T, var(U), E, P)
d(T, <empty>, E, [s(T,<empty>Evar) | PI)

where U is a logical variable of mP and

dereference(U, W, E) (13.31) .

~ v

holds, where dereference is defined as below, and W is a logical variable of
mP.

a2 4

Definition 13.32. Let U be a logical variable of mP and let E be an
environment. Then

o

dereference(U, W, E) (13.33) .

. .
]

is defined as follows;

- »" ‘. “

(.1) If U is not defined in E, then W is U.

S Ao p . . iad a] K ML ¥ u ‘ P e W W W R W VW S W VS e Sa P adiar wla"ulle et e’ Lt i e’
« . :'ﬁ

. Semantic Foundations 144

(.2 If U is defined in K, say (U, V)is on E, then
(.2.1) If V is not a logical variable of mP, W is V;
(.2.2) If V is a logical variable, \WW must satisfy

dereference(V, W, [). (13.34)
Finally, we specify that the only goals that can be directly submitted to
the metaProlog interpreter are those of the form
demo(T, G, E, P).
A Definition 13.35. A metaProlog goal demo(T, G, E, P) is solvable if there
A exists an m-derivation whose first element is d(T, G, E, P).
v
>
A
o
”

PP N NN

PN o e N

R o - B E— R Caty " wcar e’ e v et At tatam. e .
-""" g't’ f,-' .'-/ ./ ¢‘.' . o te - PCH LN - \ . % =7, LN o .

L7
c
o
®
T
| =
3
o]
[V
o
T
©
E
L}
(%)

e s A A LA

P AN O 0 A W)

O W

AL SR Y

Pt Dal D Tl)

Implementation

14. Implementation Considerations.

Qur approach to implementation has proceeded through three phases:
(1) Implementations built on top of ordinary Prolog.
(2) An interpreter written in C.

(3) A compiler derived from Warren's work [] on Abstract Prolog
Machines (APMs).

As can be seen in Section 12 and in the Appendix to Section 11, it is
possible to effectively use ordinary Prolog to create interpreters for parts of a
metaProlog system. However, this creates a double layer of interpretation,
resulting in far too poor performance. Moreover, the only reasonable way to
carry out such implementations is to identify the variables of the language
being implemented (in this case, metaProlog) with the Prolog variables.
But this identification looses far too much of the metaProlog subtlty and
bars us from a full implementation of the system.

Besides the desire for efficiency, the progression from one stage to the
next has be driven heavily by two factors:

(1) The subtlety of the treatment of the transition from formula terms as
data objects to terms as code objects and the effects of the introduction of
notions of concurrency. The details of these problems run as follows:

Existing Prolog implementations trade cleverly on an ambiguous
treatment of program expressions, allowing them at one an the same time
to be treated as terms which can appear as arguments to predicates and
simultaneously as literals (predicate calls), clause heads, and clauses
themselves. Much as we have struggled to take advantage of this trick, the
subtlety of the metaProlog system has eventually led us to partially
abandon the device, which caused us to redesign some parts of the basic
system. The fundamental difficulty lies in the treatment of variables.
Standard Prolog systems identify object level and meta level variables,
effectively rendering all variables of the system to be of a limited meta level
kind. This causes difficulty at two closely related points: the full recursive
invocation of the demonstrate predicate (the interpreter) and the proper
implementation of the streamOf (setof) construct (the set-as-list of all
entities satisfying a given condition). To obtain the correct handling of

146

Implementation

environments for both of these constructs, careful distinction between the
object level and meta level variables must be maintained, and this is not
possible with the standard approach.

(2) Concurrency was introduced both to provide a powerful programming
construct and to allow for the proper treatment of the interaction between
the interpreter and certain built-in predicates for manipulating theories
(or contexts). For example, the predicate addTo(T1, A, T2) holds if theory
T2 i3 the result of adding assertion A to theory T1. The difficulty arises in
the interaction between the interprcter's sequencing of predicate calls and
execution of such a predicate. If at the actual run-time invocation of addTo,
the assertion A has not been fully instantiated to an object level term (i.e., it
still contains meta level variables), the action of the predicate is not well-
defined. In general, it is not known whether the programmer intends a
partially-instantiated theory to be created, whether this lack of instantiation
is because some predicate call which has not yet been executed will fully
instantiate A. Without concurrency and real first-class theories which can
be partially instantiated, it would appear that the only choice is to treat this
situation as a run-time error. But to treat this as a run-time error is far too
brutal an approach for a logic-based system. As an alternative to the full
introduction of partially instantiated theories, by introduction of
concurrency facilties, we allow such a call to addTo to suspend, awaiting
full instantiation of A. (Similar problems arise if T1 is not fully
instantiated. @ We are also pursuing the full introduction of partially
instatiated theories. However, this leads us to the notion of compiled code
which is only partially instatiated, and ultimately, to a limited notion of
unification of the compiled code representing formula terms.) Since it is
desired that metaProlog be as close as possible in spirit to standard
sequential Prolog, we are not able to use all the techniques of
implementation available for Concurrent Prolog or PARALOG. In
particular, we cannot make use of the read-only variable construct without
far-reaching effects on both the philosophy and implementation of the
system. Consequently, we were forced to make a careful analysis of the
intended uses of the concurrency constructs, both as programming tools
and for control of the interation of the interpreter with the indicated built-
ins. The result was been a notion of producer variable which appears to
provide the desired programming tools, maintains the basic spirit of
standard Prolog, and appropriately controls the interation of the
interpreter and the problematic built-ins.

For the interpreter written in C, a unifier, low-level storage allocation

\ Implementation 148
v

3 routines, and a searcher (the control portion of the interpreter) were
i designed, and the first two fully coded and tested before we reached the
N conclusion that it was necessary to move on to stage (3).

“~

N The fundamental reason for moving to stage (3) -- a compiler-based
3 system -- was efficiency. Writing an interpreter in C gave us sufficient
. control to solve the subtle difficulties. And while C is efficient, interpreters
Ej for Prolog simply will not produce the speeds necessary to run realistic
N large-size experiments.

N

Consequently, in the final year of the project, we embarked on the

‘.: development of a compiler for metaProlog. Due to the significant problems
.' mentioned above, there were no known compiler construction techniques
*_:'; which we could draw on for the entirety of the project. Instead, we have
i~ had to develop substantially new ideas and techniques as we progressed.

A Y

::f. Since metaProlog is an (albeit significant) extension of Prolog, we
, began with Warren's ideas for the compilation of Prolog (cf.), using the
" copy-term approach (cf......). No versions of such a Prolog compiler were

available to us in source form, so our first task was to construct a solid
: version of such a Prolog compiler to use as the basis of our further work.
o We first set out to proceed by a classic bootstrap, writing the compiler in
Prolog, and booting it on itself using C-Prolog on a VAX 780. We joined
forces with the group led by Ross Overbeek and Rusty Lusk at Argonne
National Labs, who had written an implementation of a copy-stack Warren
abstract machine (WAM) in C as part of their exploration of concurrency in
. Prolog. We succeeded in writing the compiler, but the limitations of our C-
: Prolog and our then current UNIX system on the VAX made this incredibly
awkward, forcing us to segment the compiler sources in many small
source files. Moreover, the performance of the Argonne WAM left much to
N be desired. Thus, we rewrote the entire system in C, providing the
performance we desired (Bowen, et al. [1985]). Of special concern was the
ability to dynamically handle compiled code as required by the dynamic
. Prolog database predicates "assert and retract’. No previous system had
been able to deal with these, and forced programmers to declare predicates
which would be acted on by assert or retract , in which case the system kept
these predicates interpreted, causing considerable slowdown. The case of
assert was not difficult to deal with, since we simply included our C-coded
- compiler as a callable built-in predicate -- its performance made this
.;. eminently sensible. However, the case of retract is very different. One is
- given a term - i.e., Prolog structure - and must located the head of a
" compiled clause which matches that structure. The group developed a new

s)

&

7,270,701

T\"\"’-'.‘“(.'\'."‘"‘"\'\K"“.‘T\“&'.K“‘T-.ﬁmm“ﬂ'ﬁmm@'ﬂmmmﬂ.ﬂvﬂ. RaSatratataliailiol tut S alatet St

Implementation 149

technique of decompilation to deal with this problem (Buettner [1985]). Itis
unlike traditional decompilation techniques which pick apart the compiled
code to try to infer the source code which produced it. Instead, it exploits
the fact that compiled Prolog still represents the pattern-matching the
unification carries out during Prolog execution. Simply put, by running
the compiled clause of the code in an odd mode, we force it to build a copy of
the source from which it was compiled. (NO special compilation mode is
used.) Then the head of the decompiled clause is matched against the term
passed to retract. Along the way, we discovered a number of compiler
optimizations which were previously unknown (Turk [1985]).

We have begun developing serious designs which will guide us in
reshaping the present Prolog compiler (dubbed Columbus Prolog) to become
a compiler for metaProlog. As we see it now, most of the effects will take
place in the underlying abstract Prolog machine -- most of the process of
compilation of metaProlog clauses to instructions for the new machine will
be almost identical to that for Prolog. We must not only support theories as
first-class data objects, but must move compiled code from a separate code
space to exist on the abstract Prolog machine heap. All of this will have
profound impact on the garbage collection process. Our current thinking,
which is well-developed, is partially reflected in the simulators shown in
Section 12. We plan to continue this work under the RADC Artificial
Intelligence Consortium grant.

(of ooy o ap ey Mt gl W R

References

REFERENCES

Bowen, K.A. Meta-level programming and knowledge representation, New
Generation Computing, v.3 (1985), pp.359-383.

Bowen,K.A., Buettner,K.A., Cicekli,l., & Turk,A.K., The design and implementation
of a high-speed incremental portable Prolog compiler, Proc. 3rd Int'l Logic
Programming Conf., London, 1986.

Bowen, K.A., and Kowalski,R.A., Amalgamating language and
metalanguage in logic programming, in Logic Programming, Clark and
Tarnlund, eds, Academic Press, 1982.

Bowen, K.A. & Weinberg,T., metaProlog: A metalevel extension of Prolog,Proc.
1985 Symp. on Logic Programming, Boston, 1985.

Buettner,K.A., Fast decompilation of compiled Prolog clauses, Proc. 3rd Int'l
Logic Programming Conf., London, 1986.

Duda, R., Hart,P.,, Barrett,P., Gaschnig,J., Konolige,K.,Reboh,R., and
Slocum,d., Development of the Prospector system for mineral exploration,
Final Report, SRI International, Menlo Park, CA, 1978.

Fain, J., Hayes-Roth, F., Sowizral, H. & Waterman, D., Programming in
ROSIE: An Introduction by Means of Examples, Report N-1646-ARPA,
Rand Corp., 1982.

Hayes-Roth, F., Lenat, D., & Waterman, D., Building Expert Systems,
Addison-Wesley, 1984.

Kowalski, R.A. Logic as a database language, preprint, Imperial College,
London, July, 1981.

Nicholas, J.M., and Gallaire, H., Database: theory vs. interpretation, in
Logic and Databases, ed. Gallaire and Minker, Plenum Press, New York,
1978.

Reiter, R., Towards a logical reconstruction of relational databasse theory,
preprint, Dept. of Computer Science, Univ. of British Columbia, 1981.

150

e B A B A AN 4 e 8% 20 N $ 0 AU AN AR T taAL SR A Al ek L 0 SO N L Sl A L Bl 20 R el d B Aol 0l T 0000 "L N0 ATALATAL 0ND 00 20 TRt A a0

--- oW w

-

> n
P,

References 151

I"I.'!-'II

Shoenfield, J.R., Mathematical Logic, Addison-Wesley, Reading, Ma..,
1967.

Rl

Turk, A.K., Compiler optimizations for the WAM, Proc. 3rd Int'l Logic
Programming Conf., London, 1986.

AR LS

. Warren, D.H.D., An abstraci Prolog instruction set, SRI Technical Report,
- 1983.

Warren, D., Pereira, L., and Pereira. F., Prolog--The language and its
implementation compared the LISP, SIGPLAN Notices 12, no. 8, 1977,
109-115 (also SIGART Newsletter, no.64).

% Weyhrauch,R. Prolegomena to a theory of mechanized formal reasoning,
S Artifical Intelligence, 13, 133-170.

]
L
-«

P

o

A

St

o

»
w

:
A b N A e e S T S T e T AT

LI

A

.
N

hadE o0l a8
St

DASADA

)

